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Abstract

This paper unifies and extends the recent axiomatic literature on minimax regret. It compares

several models of minimax regret, shows how to characterize the according choice correspondences

in a unified setting, extends one of them to choice from convex (through randomization) sets,

and connects them by defining a behavioral notion of perceived ambiguity. Substantively, a main

idea is to behaviorally identify ambiguity with failures of independence of irrelevant alternatives.

Regarding proof technique, the core contribution is to uncover a dualism between choice corre-

spondences and preferences in an environment where this dualism is not obvious. This insight

can be used to generate results by importing findings from the existing literature on preference

orderings.
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1 Introduction

1.1 Motivation

The minimax regret decision criterion was suggested in Savage’s [50] reading of Wald [65] and has since

seen occasional use in statistics. Interest in minimax regret has recently increased among econometri-

cians and economic theorists alike.1 Its decision theoretic foundations, the classic reference for which

is Milnor [44], were revisited as well, specifically in recent work by Hayashi [31] and Stoye [61].2

This paper provides further insight into axiomatic characterizations of minimax regret. It is partly

motivated by the observation that, although all of the aforementioned authors talk about something

they call “minimax regret,” there are significant differences between their conception of this object. I

hope to clarify some discussions of regret by elaborating on these differences. Building on this, I provide

a unified characterization of different “minimax regret” objects in a common framework and axiomatic

system. I also give a behavioral characterization of perceived ambiguity and extend the axiomatic

characterization of one such model to convex sets, i.e. agents who can randomize. These are this paper’s

main substantive contributions. One leitmotif that connects them is the idea to identify perceived

ambiguity with violations of independence of irrelevant alternatives (IIA). As IIA is the one standard

axiom that will not be imposed in this paper, this identification resembles Ghirardato, Macheroni, and

Marinacci’s [23] identification of perceived ambiguity with violations of von Neumann-Morgenstern

independence. This similarity will turn out to be much more than semantic. The paper’s main

technical contribution is a proof technique which recovers a dualism between choice correspondences

and preference orderings in an environment where this dualism is not obvious. This allows one to

adapt existing results on preferences to statements about regret-based choice correspondences. An

exception to this is the extension to convex sets, which requires substantial work beyond recovering

said dualism.

I unify previous axiomatizations of regret along two dimensions. First, one can think of a minimax

regret preference ordering or of the according choice correspondence. All applications are phrased in

terms of the preference ordering, and it is this ordering that Stoye [61] analyzes. However, this ordering

is menu dependent, i.e. the ranking of acts can depend on the feasible set within which they are

compared. As a result, axiomatizations of minimax regret preferences are at tension with the revealed

1The strictly first appearance of minimax regret seems to be Niehans [45]. Examples for use in statistics are Das-

Gupta and Studden [14], Droge [16] [17], and Eldar, Ben-Tal, and Nemirovski [18]. See Stoye [59] for a compilation of

relevant references in econometrics. Uses in economic theory include Bergemann and Schlag [5] [6], Eozenou, Rivas, and

Schlag [20], Halpern and Pass [29], Hayashi [32], Linhart and Radner [37], Renou and Schlag [47] [48], and Schlag [51];

substantively, some of these papers overlap with econometrics.
2Both also do other things to which this paper is less related — Stoye [61] by looking at more preference orderings,

Hayashi [31] by formalizing a notion of smooth (non-minimax) regret aversion.
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preference paradigm. To illustrate, consider the statement  Â  Â , where the menu in question is

{  }. Choice from the menu reveals that  Â  and  Â , but not that  Â . If preferences

do not depend on menus, an obvious dualism between preferences and choice correspondences resolves

the problem because  Â  is revealed by choice from { }. With menu-dependent preferences, this
dualism breaks down, and choice from { } will not reveal the ranking of those same acts within
{  }. Indeed, the second part of  Â  Â  need not map onto revealed preference for  over  in

any menu. One could, therefore, prefer to restrict attention to the relevant choice correspondence, an

approach introduced to the literature on regret by Hayashi [31]. The present paper adopts the choice

correspondence approach, but on a deeper level, it shows that the two perspectives continue to be

tightly related because a somewhat different dualism can be uncovered.

Second, minimax regret can be thought of as presuming no priors, endogenous priors, or exogenous

priors.

(i) No priors: Milnor [44] and Stoye [61] axiomatize the preference ordering represented by (the

negative of)

max
∈S

½
max
∈

 ◦ ()−  ◦ ()
¾


where  and  are acts in a menu  , S is a state space, and  is an expected utility functional; I will

explain notation in detail below. The idea here is that S reflects the objective ambiguity inherent in
a situation.

In applications, prior-less minimax regret was recently used by Bergemann and Schlag [5], Manski

[40] [41] [43], Schlag [51] [52], and Stoye [57] [62]. For example, Manski considers the problem of

treatment choice — be it assignment to on-the-job training programs or to medical treatment — as a

statistical decision problem and compares the risk functions generated by different statistical treatment

rules. He advocates the use of minimax regret risk as decision criterion, but certainly not the use of

priors.3 Indeed, as this version of minimax regret is the only one that can be interpreted without any

notion of priors, it is the one that frequentist statisticians must have in mind and that corresponds to

Savage’s [50] original suggestion. It is also used in Linhart and Radner [37] and most of Halpern and

Pass [29].

3Notation in statistics is typically somewhat different. Statisticians postulate a set of conceivable data generating

processes and a loss function. A risk function maps any combination of true data generating process and statistical

decision rule onto the implied expectation of loss. Noting that data generating processes correspond to states of the

world, statistical decision rules to acts, and loss to (the negative of) utility, risk functions are seen to map onto the

functional  (i.e., utility acts). The parallels are explained in detail in Stoye [58].
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(ii) Endogenous Priors: Consider also minimization of

max
∈Γ

Z µ
max
∈

 ◦ ()−  ◦ ()
¶


where the “set of priors” Γ ⊆ ∆S is behavioral or “as if.” Mathematically, this generalizes the previous
expression because Γ could equal ∆S; note also that it simplifies to expected utility if Γ is a singleton.
This approach is in line with Gilboa and Schmeidler [26] and the large literature that builds on them.

It may be the most interesting one for a theorist since we cannot typically observe people’s (sets of)

beliefs; hence, these axiomatizations are most revealing regarding a theory’s observable implications.

Endogenous prior minimax regret was axiomatized by Hayashi [31] subject to the caveat that Γ must

intersect the interior of ∆S; it was recently applied to single-agent decision problems by Hayashi [32]
[33] and to games by Renou and Schlag [47] [48] and Halpern and Pass [29].

(iii) Exogenous Priors: An intermediate possibility is that the representation is as in (ii) but

Γ is a feature of the environment. The quintessential example is the robust (multi-prior) Bayesian

literature (Berger [7]), which first specifies a set of priors and hence the extent of ambiguity in a

decision situation and subsequently thinks about how to make decisions. Indeed, many contributions

make the first and not the second step (e.g., Wasserman and Kadane [66]), and the literature “does

not as yet contain substantial work on how exactly a specific action should be chosen” (Zen and

DasGupta [67]; see also Arias, Hernández, Martín, and Suárez [2]). If specification of set valued beliefs

precedes the contemplation of action, they should arguably be considered part of the decision theoretic

environment, and beliefs revealed by choices should be axiomatically linked to them. In particular,

a characterization of minimax regret with exogenous priors amounts to an axiomatic foundation for

Γ-minimax regret (Berger [7]; see Bergemann and Schlag [5] or Chamberlain [10] for applications to

economics). The symbol Γ for sets of priors is chosen to emphasize this link.

To repeat, which of these possibilities appears most interesting depends on the desired application.

The typical, namely descriptive and behavioral, application in economic theory will rely on case (ii).

On the other hand, although this paper is rooted in the revealed preference paradigm, it is partly

motivated by statistical and econometric applications. A frequentist application avoids priors and

consequently, is an example of case (i). When statistical applications do use (sets of) priors, these

priors should typically be thought of as exogenous; these cases therefore fall under (iii).4

4Case (iii) also ties in with a recent literature that treats (possibly vague) prior information as part of the decision

theoretic environment. See Gajdos, Tallon, and Vergnaud [22] for an early reference and Giraud and Tallon [27] for an

advocacy and further references.
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1.2 Overview and Brief Summary

This paper provides characterizations of minimax regret choice correspondences for all these cases and

connects them via a behavioral characterization of perceived ambiguity. For endogenous prior minimax

regret, the result resembles a finding in Hayashi (2008, theorem 4); in this case, the main contribution

lies in the embedding of results, the removal of the aforementioned restriction of Γ, and a change of

perspective that will be explained now. More generally, the paper contains the following innovations.

• Axioms are designed to think about regret as a novel theory of ambiguity aversion, where such
aversion is injected into an otherwise standard setting by relaxing independence of irrelevant alter-

natives (respectively the weak axiom of revealed preference) and not von Neumann-Morgenstern

independence. To emphasize this symmetry, notation is very similar to Gilboa and Schmei-

dler [26] and other references. The idea, which will be reiterated when relevant axioms are

discussed, is that the comparison of two options is revealed ambiguous if revealed preference

between them can switch as choice problems change.

• Technically, it is observed that, while a failure of independence of irrelevant alternatives appar-
ently disconnects choice correspondences from preference orderings, the axioms are still strong

enough to recover a tight link between the two. This link is the focus of lemma 2 below and will

be explained in detail later.

• The scope of the literature on regret is expanded by considering randomized decision making.
This extension should be of special interest for statistical decision theory because statisticians can

and do randomize. From a revealed preference perspective, randomization makes the problem

harder by convexifying all choice sets and thereby reducing the domain on which axioms can

be asserted. The problem is resolved, and results are recovered, for prior-less minimax regret,

though it is open for endogenous prior minimax regret.

An overview of the paper’s structure goes as follows. Section 2 describes the decision theoretic

environment and states axioms. It then provides a lemma that generates the aforementioned connection

between choice correspondences and preference orderings. Characterizations of prior-less minimax

regret (by importing a result of Stoye [61] that builds on Milnor [44]) and endogenous prior minimax

regret (by importing Gilboa and Schmeidler [26]) follow easily. One can also use a link to previous

work on multi-prior Pareto criteria by Bewley [8] and Ghirardato, Macheroni, and Marinacci [23]

to characterize a notion of ambiguity perception. This informs an axiomatization that identifies the

object Γ with an exogenous set of priors. The section concludes by recovering the characterization of

prior-less minimax regret if agents have access to objective randomization devices. Section 3 offers a

conclusion and comparisons to other notions of regret in the literature.
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2 Axiomatic Analysis

2.1 Preliminaries and Axioms

The setup is inspired by Anscombe and Aumann [1]. There is a set S of states of the world , endowed
with an algebra Σ of events; a set X of outcomes ; and a set F of acts     . The only restrictions on
S, X , and Σ are that X must have at least two elements and that theorems 3 and 7 require the existence
of three distinct, nonempty events. An act  is a Σ-measurable, finite step function  : S → ∆X that

maps states  onto finite outcome distributions (). An act is constant if  does not depend on .

With the usual abuse of notation, ∆X is embedded in F by using      to denote both lotteries in

∆X and the corresponding constant acts. Mixtures of acts are identified with statewise mixtures, i.e.

 ≡  + (1 − ) is characterized by () = () + (1 − )(). The word “convex” henceforth

denotes closure under such mixture. The decision maker can choose from a finite, nonempty menu

 ⊆ F . For any menu  ,  +(1−) denotes the menu generated by replacing every  ∈ with

the analog mixture: +(1−) ≡ { 0 ∈ F :  0 = +(1−)  ∈}. I do not presume existence
of a preference ordering but of a choice correspondence  that maps every  onto some nonempty

() ⊆ . (This is a good moment to emphasize that in this paper, ⊆ and ⊂ are distinct symbols.)
I also define the problem of choosing an act after state  has been learned. The according choice

correspondence will be labelled . As is standard in the literature, I impose some notion of dynamic

consistency by assuming that choice after revelation of  is equivalent to choice from constant acts;

more formally,  ∈ () iff () ∈ ({() :  ∈}). I call an act  strictly potentially optimal in
 if there exists  s.t. () = {}. Finally, for future use, let ∆S denote the set of finitely additive
probability measures on (SΣ).
The following axioms on  will be maintained throughout.

Axiom 1 Nontriviality

∃ : () ⊂

Axiom 2 Monotonicity

If  ∈ ,  ∈ (), and  ∈ ({ }) for all , then  ∈ ().

Axiom 3 Independence

( + (1− )) = () + (1− )

Axiom 4 Independence of Irrelevant Alternatives (IIA) for Constant Acts

6



Let  and  consist of constant acts, then

( ∪) ∩ ∈ {()∅} 

Axiom 5 Independence of Never Strictly Optimal Alternatives (INA)

Let  and  be such that ( ∪) ∩ 6= ∅ for all . Then

( ∪) ∩ ∈ {()∅} 

Axiom 6 Mixture Continuity

Fix any menu  and acts  ∈  s.t. ( ∪ {}) = {},  ∈  , and  ∈ F. Then there exists
 ∈ (0 1) s.t. ( ∪{+(1−)}) = {+(1−)} and +(1−) ∈ ( ∪{ +(1−)}).

Axiom 7 Ambiguity Aversion

() is the intersection of  with a convex set. That is, fix any acts  , scalar  ∈ [0 1], and
menu  ⊇ {   + (1− )}, then { } ⊆ ()⇒  + (1− ) ∈ ().

Some remarks on the axioms are in order. Monotonicity states that if the agent would choose 

from { } in every state of the world, then she cannot revealed prefer  over  in any menu. It is the
revealed preference equivalent of the axiom of the same name in Gilboa and Schmeidler [26] and other

references. Independence requires that choice is invariant under mixing of entire menus with some act.

One intuition for this comes from the following thought experiment. Suppose an agent chooses from a

menu, but then learns that her choice will be actualized only conditional on heads in a previous coin

toss; she has no control over what will happen conditional on tails. Then it can be argued that her

choice behavior should not be affected.5 The same adaptation of independence was recently used by

Eliaz and Ok [19] and Ortoleva [46].

Axioms 5 and 6 touch upon a crucial, and controversial, feature of minimax regret, namely that

it violates independence of irrelevant alternatives (IIA).6 This axiom would translate into the present

setting as

( ∪) ∩ ∈ {()∅} ∀

5The leap from the thought experiment to the axiom relies on a hidden assumption of compound lottery reduction or

“reversal of order.” Here as in many other references, that axiom is implicit in the notation for mixture acts; see Seo [55]

for a treatment that makes it explicit.
6 I here refer to the IIA exiom for individual decision making (not social choice) due to Arrow [3, definition C.4]. This

axiom is equivalent to Sen’s [54] properties  and , which translate into present notation as

 ∈ ( ∪) ∩ =⇒  ∈ ()

{ } ∈ () =⇒ ( ∪) ∩ { } ∈ {{ }∅} 

the former of which goes back at least to Chernoff [11].
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meaning that preferences revealed by ( ∪) cannot contradict those revealed by (): Choice

from  ∪ is either strictly revealed preferred to (), in which case it cannot contain elements of

the latter, or it is revealed indifferent to (), in which case it contains all of it.

In this paper, IIA will only be imposed on restricted domains. Specifically, axioms 5 and 6, as well

as several axioms to come, introduce a leitmotif: Comparison of () and ( ∪ ) may reveal

violations of IIA if the ambiguity perceived in a choice problem changes as one expands  to  ∪ .
This cannot be the case if both  and  consist of constant acts, because then there is no ambiguity

to begin with; hence axiom 5. Furthermore, axiom 6 (INA) specifies that this cannot happen if acts

added to menus are not strictly potentially optimal. An intuition for this is that the agent’s attitude

to one and the same outcome in different states may be influenced by what could have been achieved

in a state, hence the nature of an act’s ambiguity may change with this information. This intuition

is obviously related to the concept of regret, and INA accordingly plays a major role in enforcing

regret-based choices.7

Ambiguity aversion translates an axiom proposed by Schmeidler [53]; see Milnor [44] for a precursor.

Note that unlike in most other contexts, ambiguity aversion is not a weakening of independence because

it would follow from the latter only in conjunction with IIA.

Consider now the following axiom.

Axiom 8 Symmetry

Fix any menu  and disjoint events 1 2 ∈ Σ\ {∅} s.t. any act  ∈  is constant on 1 as

well as 2. Define 
0 by

 0() =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
()k∈2

  ∈ 1

()k∈1
  ∈ 2

() otherwise



Let the function (·)0 : 2F → 2F map every set of acts  ⊆ F onto  0 ≡ { 0 :  ∈ }. Then

( 0) = (())0

In words, symmetry states the following. Take any two events such that all acts in a menu are

constant on either event, then exchanging the consequences of the events throughout the menu does not

affect choices. This is certainly not an innocuous condition — the two events might be of very different

size with respect to some measure on the state space. Indeed, symmetry enforces a strong attitude of

ignorance regarding elements of S, specifically a refusal to weight them according to some importance

criterion like subjective probability. The idea that prior ignorance about events should be modelled in

7Krähmer and Stone [35] give a similar, informational motivation for regret, although their technical notion of regret

is outside this paper’s scope. Essentially the same axiom as INA is used in Hayashi [31], but the original source is

Milnor [44, “special row adjunction”].
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this way is due to Arrow and Hurwicz [4], who specify similar axioms for choice correspondences; see

also Cohen and Jaffray [13] for a preference-based formulation that is otherwise analog to the above.

Symmetry is implausible if one has available, and wishes to consider, prior information about states,

respectively if one wishes to model agents who have and use such information. On the other hand, if

no prior information exists, the axiom is compelling because decisions would otherwise be sensitive to

manipulations of S, e.g. the relabeling of states or their duplication via conditioning on trivial events
(Arrow and Hurwicz [4]). These observations are as they should be, given that symmetry will turn

out to characterize prior-less minimax regret. For the intermediate case of vague prior information

— not enough to commit to a prior but sufficient to cast doubt on symmetry —, I would point to the

characterization of exogenous prior minimax regret below.

I finally consider the following axiom. Say that a menu has a state independent outcome distributions

if the set { ∈ ∆ : ∃ ∈() = } does not vary with . In words, the set of feasible outcome

lotteries is constant across states. Any menu consisting of constant acts induces state independent

outcome distributions, but a menu can have this property without containing any constant act. Now

consider the following.

Axiom 9 C-Betweenness When Outcome Distributions are State Independent

For any act  , constant act , scalar  ∈ (0 1), and menu  ⊇ {   + (1 − )} with state
independent outcome distributions, if  ∈ () and  ∈ (), then  + (1− ) ∈ ().

C-betweenness for state independent outcome distributions is related to betweenness (Chew [12],

Dekel [15]), which states that if two acts are ranked indifferent, then they are also ranked indifferent

to any mixture between them. The possibility that the two acts are chosen over the mixture is already

excluded by ambiguity aversion; the new axiom ensures that the mixture cannot be chosen over the

indifferent acts.8

The motivation of c-betweenness is related to the usual motivation of c-independence: It limits

the scope of ambiguity aversion, that is, of preference for mixtures. Intuitively, a decision maker

might strictly prefer mixtures because they constitute a hedging of bets across ambiguous states. C-

independence states that mixture with a constant act cannot constitute a hedging of bets. Axiom 9

further tightens the conditions under which a hedge is denied, thus weakening the axiom. The first

tightening is that the menu must have state independent outcome distributions. The idea here is

to once again acknowledge that ambiguity can arise not just because outcomes differ across states,

but also because the evaluation of outcomes might depend on what could have been achieved. The

8The axiom’s formulation is somewhat stronger than directly backed by the intuition because a notion of revealed

indifference between  and  is not readily available and, therefore, not presumed. However, I would argue that intuitively,

the case where  and  are equally is surely the critical one for the axiom’s plausibility.
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restriction shuts down the latter channel: Observed outcomes may still be informative about which

state occurred, and hence about which act should have been chosen, but if the set of ex post feasible

outcome distributions is state independent, then none of this information matters for what could have

been achieved. The second tightening is that the axiom only applies to mixture of  with constant

acts. Substantively, this weakening sharpens the focus on preferences for or against randomization.

By applying for all constant acts from very bad to very good ones, c-independence additionally limits

the dependence of ambiguity attitudes upon stakes.

I conclude this section by stating a straightforward result: A subset of axioms that will be main-

tained throughout implies that  extends some expected utility choice correspondence e in the sense

of agreeing with it on choice from constant acts.

Lemma 1  fulfils axioms 3, 4, and 6 iff choices from sets of constant acts are rationalized by von

Neumann-Morgenstern expected utility, i.e. there exists a unique (up to affine transformation) function

 : X 7→ R s.t. the restriction e of  to menus f consisting of constant acts  is

e ³f´ = argmax
∈

Z
()

2.2 Characterizations of Minimax Regret

This section is devoted to characterizing different versions of minimax regret. The key to this is

contained in the following lemma.

Lemma 2  fulfils axioms 1 through 6 iff it can be represented as

() = arg min
∈

( ◦ ())

where the finite step function  ◦ () : S 7→ R+ is defined by

( ◦ ()) () ≡ max
∈

 ◦ ()−  ◦ ()

 ◦ () ≡
Z

()()

with  as in lemma 1 and furthermore nonconstant, and the functional , which takes values in R+,

is mixture continuous ({ : ( + (1− )0) ≥ (00)} and { : ( + (1− )0) ≤ (00)} are closed
for all  0 00), monotonic in two different senses ( ≥ 0 for all  implies () ≥ (0);   0 for all

 implies ()  (0)), and homothetic.

Lemma 2 is modelled on lemma 3.3 in Gilboa and Schmeidler [26], with notational differences

indicating substantive ones. It tightly limits the ways in which ambiguity can affect choices — they

must reveal a preference ordering, here represented by value functional , over objects  ◦ () that
one might call regret acts.
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The proof of lemma 2 contains four crucial steps, the second and third of which are among this

paper’s main insights.

• Lemma 1, monotonicity, and INA jointly imply that acts can be identified with utility acts

 ◦  : S 7→ R. This idea is standard except for the observation that it requires merely INA

instead of IIA.

• Independence can be used to restrict attention to the set M0 of menus whose join or ex-post

utility frontier, {max∈  ◦ ()}
∈S , is everywhere zero. This insight was anticipated more

than half a century ago (Chernoff [11, theorem 2]) but seems to have gone unused since; e.g., it

is missing in Milnor [44] and Borodin and El-Yaniv [9]. An intuition is that if there exists an act

 with  ◦ () = −max∈  ◦ (), then independence implies

 ∈ ()⇐⇒ 1

2
 +

1

2
 ∈ 

µ
1

2
 +

1

2


¶


but by construction,max∈ 1
2
+ 1

2
 ◦() = 0 for every . Thus,  is determined by its restriction

toM0. (The formal proof involves some detours because existence of  is not guaranteed.)

• INA implies that one can construct a menu-independent preference ordering % which ratio-

nalizes the restriction of  to M0. Specifically, for all acts   with nonpositive utility range,

define

 %  ⇐⇒ ∃ ∈M0 :  ∈ ()  ∈

that is,  %  if  is sometimes chosen in the presence of . Then % generates the restriction of

 toM0 as choice correspondence. In “nice” cases, % is furthermore a complete ordering that

can be represented by a value functional  with the asserted properties. (Note in particular that

independence does not imply that % is independent, however it yields that % is homothetic.)

• There are two reasons why % may be incomplete. First, if the range of  is bounded, acts whose

utility is very low may not be chosen from any menu inM0, thus there is no notion of revealed

preference among them. At this point (though not later), the problem is straightforwardly

resolved by observing that any extension of % will induce % as choice correspondence and

that homotheticity of % informs an extension which leaves all other properties of % intact.

Second, % may fail to order any acts with strictly negative utility range, a salient example

being a Bayesian decision maker whose prior is concentrated on one state. In this case, the

agent’s behavior only distinguishes a set of “choosable” acts from a set of “non-choosable” ones;

however, there still exists a criterion function  with the claimed properties that rationalizes 

onM0.
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Returning to the substantive importance of lemma 2, its main point is as follows. The proofs in

Gilboa and Schmeidler [26], as well as many related papers, initially establish that preferences can be

represented by a value functional  operated on utility acts. Lemma 2 is analogous to this, except

that  is operated on regret acts which absorb any menu dependence of the agent’s evaluation of acts.

Substantively, this leads to a separation of risk aversion as well as menu dependence of preferences,

both of which are absorbed by  ◦ (), and attitude to uncertainty about , which is reflected in
.9 Formally, it re-instates a dualism between choice correspondences and preferences, albeit a more

intricate one than is generated by IIA. The practical benefit of this dualism is that existing axiomatic

results for preferences can be imported if % can be shown to fulfil their if-sides.

This idea will now be exploited to generate different axiomatizations of choice correspondences.

The first results are theorems 3 and 4, which characterize minimax regret choice correspondences with

no respectively endogenous priors.

Theorem 3 Prior-less Minimax Regret

Let Σ contain at least three distinct events. A choice correspondence fulfils axioms 1 through 8 iff

it can be represented as

() = arg min
∈

max
∈S

½
max
∈

 ◦ ()−  ◦ ()
¾

with  as in lemma 2.

Given lemma 2, theorem 3 is established by applying Stoye [61, theorem 1(iii)] to % .

Theorem 4 Endogenous Prior Minimax Regret

A choice correspondence fulfils axioms 1 through 7 and 9 iff it can be represented as

() = arg min
∈

max
∈Γ

Z µ
max
∈

 ◦ ()−  ◦ ()
¶


for some compact, convex Γ ⊆ ∆S. Here, Γ is unique and  is as in lemma 2.

To establish this result, one needs to show that % is c-independent, after which Gilboa and

Schmeidler [26] can be invoked. This argument has two main ingredients. First, axiom 9 together

with ambiguity aversion ensures that % fulfils a preference version of c-betweenness:  ∼  implies

that  ∼  + (1− ) for all  ∈ (0 1). This ensures that indifference sets of % are collections of

9This separation is less clear in Gilboa and Schmeidler [26, lemma 3.3] because there, the preferences encoded by  may

change if  is replaced with a positive affine transformation of itself; since this is considered an equivalence transformation,

 is not really identified separately from . To achieve this separation, one also has to impose c-independence of 

(Ghirardato, Maccheroni, and Marinacci [24]). The problem does not arise here: A positive affine transformation of

 induces a positive linear transformation of  ◦ (); since % is homothetic, the choice correspondence cannot be

affected.
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rays emanating from constant acts. Homotheticity of % prevents these rays from fanning out or in,

leading to c-independence. Thus, the “stake independence” aspect of c-independence is delivered by

independence of , which drives homotheticity of % .

Theorem 4 resembles a finding in Hayashi [31, theorem 2]. The settings are slightly different, and,

while there is much overlap between axioms, c-betweenness here and “constant-regret independence

of regret premium” there are rather dissimilar. Also, monotonicity displaces Hayashi’s admissibility

axiom. As a result of this weakening, Γ need not intersect the interior of ∆S; for example, the case
of a Bayesian who assigns zero probability to some states is not excluded. The main contribution of

theorem 4, however, lies not in the statement of the result but in its derivation (specifically, exhibiting

a tight link to Gilboa and Schmeidler [26]) and interpretation (specifically, embedding it in other

results and deriving regret as a model of ambiguity aversion). While the representation in theorem 3

is obviously a special case of the one in theorem 4, it is also worth noting that theorem 3 does not

use c-betweenness. Thus, while prior-less minimax regret can be enforced by invoking theorem 4 and

then observing that the maximal set of priors is the only one consistent with symmetry, the resulting

characterization would not be tight. This resembles the observation (Stoye [61]) that for preferences,

c-independence is not needed to characterize prior-less maximin utility.

2.3 A Characterization of Perceived Ambiguity

Lemma 2 can also be used to develop a behavioral notion of perceived ambiguity in the framework of

theorem 4. The construction requires one preliminary step:

Definition 1 For any choice correspondence , define D by  D  iff

[ + (1− ) ∈ ()⇒  + (1− ) ∈ ()] 

∀ ∈ (0 1)  constant,  ⊇ { + (1− )  + (1− )}

Remark 1 If the range of  is unbounded and theorem 4 applies, one can equivalently define  D 

iff

[ ∈ ()⇒  ∈ ()] ∀ ⊇ { }

To get an intuition, the reader should inspect the simplified definition:  D  if there exists no

menu in which  is chosen over  . This “revealed unambiguous preference” is in general transitive

but incomplete. I relate it to ambiguity to once again emphasize the conceptual link between menu

dependence and ambiguity. The idea is that if  D , then the comparison between  and  is context

independent, hence revealed unambiguous. The mixing of both acts with a constant act is a technical

detail that becomes necessary if  is bounded. It enables one to manipulate the utility range of acts

13



while only rescaling (by a state-independent factor) their utility differences across states. Given that

independence is already presumed, this would appear rather innocuous.10

Comparative ambiguity perception can be characterized as follows.

Definition 2 The choice correspondence  reveals (weakly) more perceived ambiguity than  0 if

 D  =⇒  D0 

Theorem 5 Characterization of Comparative Ambiguity Aversion

Assume that theorem 4 applies. The choice correspondence  reveals (weakly) more perceived

ambiguity than  0 iff both can be represented by the same utility function  in conjunction with sets

of priors Γ (to represent ) and Γ0 (to represent  0) s.t. Γ ⊇ Γ0.

The theorem lends further support to the identification of revealed unambiguous preference with

ambiguity perception because it tightly links perceived ambiguity to sets of priors, which prima facie

represent the decision maker’s perception of ambiguity in her environment. It should be kept in mind,

however, that this paper is behavioral and hence, Γ is not claimed to map onto any real objects,

including true sets of beliefs. One might therefore want to more cautiously interpret the result as a

characterization of D that illustrates conceptual consistency of this paper’s terminology. (See also

the similar discussion in Ghirardato, Macheroni, and Marinacci [23].)

To understand why the theorem is true, let the range of  be unbounded and recall that the link

between  and % from lemma 2 is partly established by mapping arbitrary menus intoM0 via mixing

with a “normalizing” act. This link can be used to show that  D  iff +(1−) % +(1−)
for any probability  ∈ [0 1) and any act . But this means that  D  is the independence-

abiding, incomplete preference ordering defined by Ghirardato, Macheroni, and Marinacci’s [23, see

also [8]] to capture perceived ambiguity. Theorem 5 then follows by importing their results. It implies

that comparative ambiguity perception coincides with comparative regret aversion in Hayashi [31].

Once the link between % and D has been established, this is expected because Hayashi’s notion of

comparative regret aversion adapts Ghirardato and Marinacchi’s [25] notion of comparative ambiguity

aversion, which coincides with the one of Ghirardato, Macheroni, and Marinacci [23] for maxmin utility

preferences — but % is just such a preference.
10 It may even be surprising that the feature is needed. To see why, let there be just two states, i.e. S = {1 2},

identify acts  with utility vectors ( ◦ (1)  ◦ (2)) ∈ R2, and assume that the choice correspondence is the priorless
one. Then  = (1 0) and  = (−1 1) should not be D -comparable; indeed,  is chosen over  from {  (−2 3)}. But
if  is bounded above by 1, then  incurs regret of exactly 1 but  incurs regret of at least 2 in every menu containing

both, hence the simplified defionition of D would imply  D . Mixing  and  with constant acts resolves the

problem: ({(13 0) (−13 13) (−23 1)}) = {(−13 13)}.

14



An interesting application of theorem 5 is axiomatization of minimax regret where the set of priors

is exogenous. Let there exist a compact, convex object Γ∗ ⊆ ∆S and consider linking it axiomatically
to the object Γ in the preceding representation. One motivation for this approach is statistical decision

theory, in particular Γ-minimax regret; see Giraud and Tallon [27] for the argument that models with

exogenous imprecise information should receive more attention in theory more generally. The necessary

axioms are as follows.11

Axiom 10 Γ∗-Monotonicity

Z
 ◦ () ≥

Z
 ◦ ()∀ ∈ Γ∗ =⇒  D 

Axiom 11 Γ∗-Ambiguity

 D  =⇒
Z

 ◦ () ≥
Z

 ◦ ()∀ ∈ Γ∗

To understand Γ∗-monotonicity, recall that in view of lemma 1, the standard monotonicity axiom

can be slightly rewritten:  ∈ ({ })∀ is equivalent to  ◦ () ≥  ◦ ()∀. This reveals
that Γ∗-monotonicity is intuitively similar to monotonicity, but strengthens it. It imposes that if the

comparison of  and  is commonsensically unambiguous to anybody who accepts utility function 

and priors Γ∗, then revealed preferences should indeed not reveal any ambiguity in the sense of menu

dependence, and should furthermore have the obvious direction. The same axiom is used, to a similar

effect as here, by Gajdos, Tallon, and Vergnaud [22].

Conversely, Γ∗-ambiguity stipulates that revealed preference is unambiguous in the sense of menu-

independent only if the according comparison of acts is commonsensically unambiguous given Γ∗.

Equivalently, if the comparison of two acts under Γ∗ is ambiguous in the sense that either act is

favored by some element of Γ∗, then the choice correspondence reflects this ambiguity in the sense of

violating IIA. This relates Γ∗-ambiguity to the aforementioned leitmotif, namely that violations of IIA

should be driven by ambiguity.

In short, Γ∗-monotonicity can be thought of as ensuring that the decision maker does not see more

ambiguity than is encoded in Γ∗; Γ∗-ambiguity can be thought of as ensuring that she does not see

less. The axioms’ effects accord with these intuitions.

Corollary 6 Exogenous Priors Minimax Regret

Assume that theorem 4 applies. Then:

11 I find it most intuitive to state the axioms in terms of , but of course, existence of this object depends on previous

axioms. To avoid this, one can rephrase

◦() ≥  ◦()∀ ∈ Γ∗ as


() ∈ 


()


()


∀ ∈

Γ∗. The statements are equivalent by lemma 1.
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(i) A choice correspondence satisfies Γ∗-monotonicity iff Γ ⊆ Γ∗.
(ii) A choice correspondence satisfies Γ∗-ambiguity iff Γ ⊇ Γ∗.

Corollary 6 is true because axioms 10 and 11 restrict  to reveal less (respectively more) ambiguity

than the minimax regret ordering with the same utility function and set of priors Γ∗. It builds on

theorem 4, but also connects theorem 3 to theorem 4 because it identifies prior-less minimax regret

with maximal perceived ambiguity. This yields a yet alternative (and tight) characterization of prior-

less minimax regret and again illustrates conceptual consistency of terminology. After all, we would

surely think of the absence of any prior information as maximizing ambiguity.12

2.4 Prior-less Minimax Regret when Agents can Randomize

The above and all other existing results on minimax regret assume that agents cannot randomize,

thus allowing for axioms to be asserted for choice from nonconvex sets.13 (Indeed, given finiteness

of menus, every nondegenerate menu is also nonconvex.) But statisticians can and do randomize,

and minimax regret statistical decision rules frequently prescribe randomization (Manski [41] [43],

Schlag [52], Stoye [57] [62]). What’s more, the ambiguity aversion axiom maintained throughout

enforces a weak preference for randomization. It appears less than satisfying to assume that agents

(weakly) want to randomize yet to prevent them from doing so even though the agents in questions

(i.e., statisticians) clearly can.

Thus, assume now that agents can choose from convex hulls of finite menus.14 This will be captured

by a change in notation: In this section only, a menu  consists of a finite set of acts and all possible

mixtures over those, thus it is the convex hull of the corresponding object from earlier sections. This

convexification severely affects even a minimal sense of revealed preference between two acts. Choice

from { } at least reveals what can be thought of as preference between them in menu { }. Choice
from the convex hull of { } — heneforth denoted { } — might (and, for ambiguity averse decision
makers, frequently will) contain only proper mixtures of the two. This renders revealed preferences

12As an aside, by identifying D with the incomplete, independent relation at the heart of Ghirardato, Macheroni, and
Marinacci [23], one can easily re-import axioms 10 and 11 and corollary 6 into their setting to yield a characterization

of exogenous prior maximin utility.
13 I thank a referee for raising the question answered in this section. The question was raised, and I would be interested

in the analysis, for all results in this paper, but the other extensions are beyond this paper’s scope.
14The notation implies that randomization by the decision maker and objective risk modelled by outcome lotteries are

compounded; in other words, lotteries over sets of acts equal convex hulls of those sets. Of course, this is subject to the

caveat from footnote 5. Also, while an experimantal protocol in which one observes randomized choice is conceivable,

in observational data one will typically only recover choice frequencies, i.e. an imperfect measure of choice probabilities.

I leave deeper analysis of these issues for further research, noting in passing that if models of deterministic choice are

taken to actual data, measurement error typically becomes an issue as well.
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inherently incomplete. What’s more, even an unrestricted independence of irrelevant alternatives

assumption only corresponds to the weak but not the strong axiom of revealed preference; as soon

as it is restricted to convex sets, it fails to imply the latter and, therefore, transitivity of revealed

preference.15 An additional loss of structure occurs with respect to continuity, which will be adapted

as follows:

Axiom 6* Mixture Continuity for Convex Hulls

Fix any menu  , act  ∈ F s.t. ( ( ∪ {}))∩ = ∅,  ∈ , and  ∈ F. Then there exists
 ∈ (0 1) s.t.  ∈ (( ∪ { + (1− )})) and  + (1− ) ∈ ( ( ∪ {  + (1− )})).

On the if-side of this axiom, it is not required that ( ( ∪ {})) = {}, so the axiom may feel

somewhat stronger. This is attenuated by a slight weakening: The axiom cannot apply if  ∈  .

More importantly, the then-side became correspondingly weaker: The requirement that ( ∪ { +
(1−)}) = { +(1−)} is weakened to  ∈ (( ∪ { +(1−)})). Indeed,  +(1−) ∈
(( ∪ { + (1 − )})) is a relevant possibility.16 Regarding other axioms, note also that the

conclusion of INA now is (( ∪)) ∩ ∈ {()∅} and that ambiguity aversion now simply
requires  to be convex-valued.

As a result of these complications, I am not able to recover lemma 2 nor a direct analog to theorem

4. However, it is possible to recover the conclusion of theorem 3 with substantial additional effort and,

interestingly, by using c-betweenness.

Theorem 7 Prior-less Minimax Regret When Agents can Randomize

Consider a setting exactly as in the preceding theorems, but where agents can randomize, thus

menus  are convex hulls of finiute menus. Let Σ contain at least three distinct events. Then a choice

correspondence fulfils axioms 1 through 5, 6∗, and 7 through 9 iff it can be represented as

() = arg min
∈

max
∈S

½
max
∈

 ◦ ()−  ◦ ()
¾

with  as in lemma 2.

While the result looks familiar, much has changed below the surface. In particular, the revealed

preference ordering % generated from choice problems in M0 is now highly incomplete. It is still

true, however, that every completion % of % will induce  as choice correspondence on M0, and

15See Stoye [60] for a detailed analysis of revelation of menu-independent preferences by choice from convex sets.
16Consider a three-state world in which acts are identified with utility vectors (1 2 3) ∈ R3. If % is rationalized

by prior-less minimax regret, then (0 0 0) Â (0−1−1) and (0−1−1) Â (−2−1−1); to see the latter, consider
choice from ({(0−1−1) (−2−1−1) (−5 0−5) (−5−5 0)}). Yet (−2−−) Â (0−1−1) for no  ∈ (0 1)
because a randomization that puts weight (1(1 + )) on (−2−−) fares better than either act.
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theorem 3 can be recovered by specifying an appropriate completion % of % . The trick is to assign to

every act the value of a suitably defined certainty equivalent, specifically the best constant act that is

not strictly %-preferred to it. (This somewhat intricate definition is necessary because revealed %-

indifference between an act and its certainty equivalent cannot be presumed.17) An argument driven

by symmetry and ambiguity aversion then shows that % is the prior-less maximin utility ranking. With
this finding in place, one can show that % extends % . In an interesting twist, this last step seems

to require c-betweenness to ensure that acts and their certainty equivalents are either %-indifferent

or %-noncomparable but never strictly %-ordered; this is why c-betweenness appears in the axioms

here and not in theorem 3. Although substantial portions of the proof of lemma 2 are invoked in the

proof of theorem 7 and intuitions are certainly related, the result therefore stands as the only main

result in this paper that is not really a corollary of lemma 2.18

3 Conclusion

This paper unified some of the recent, axiomatic literature on minimax regret. It adopted choice

correspondences as general framework, but demonstrated that even without independence of irrelevant

alternatives, there exists a tight link between axiomatizations of preference orderings and of choice

correspondences. Under restrictions shared by many regret-based approaches, results of the latter

kind can be generated from existing results of the former kind. I used this insight to provide a

number of minimax regret characterizations, namely of prior-less, of endogenous multiple prior, and of

exogenous multiple prior minimax regret, a characterization of perceived ambiguity, and the extension

of prior-less regret to choice from convex (through randomization) sets.

The framework is intended to be rather universal and covers all of the applications cited in the

introduction. Nonetheless, it is impossible to unify in one paper every concept that has been labeled

“regret.” I therefore conclude by clarifying the relation between minimax regret as formalized here and

some other notions in economics and related fields.

Statistical decision theory is one motivation of this paper, and many but not all uses of regret

there coincide with formalisms here. To comply with this paper’s notion of minimax regret, statistical

decision rules or estimators must be compared to an “oracle estimator” which is best among the

17 In the setting of footnote 11, (−1−1) is the certainty equivalent of (0−1), yet the two are not revealed indifferent:
Any  ∈ M0 that contains {(0−1) (−1−1)} also contains an act ( 0), and the agent will pick some mixture of
(0−1) and ( 0) over either of {(0−1) (−1−1)}.
18The wording is hedged because I do not have an example for necessity of c-betweenness, so this question is open.

The original parts of the argument are related to, and borrow from, concurrent work reported in Stoye [60]. The present

exercise is harder, however, because the restriction to menus in M0 means that acts need not be % -comparable to
their certainty equivalents.
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feasible ones, given hypothetical knowledge of the true state of the world. Examples include the

treatment choice problems in Manski [40] [42] [43], Schlag [52], and Stoye [56] [57] [62], where the

oracle treatment rules are no-data rules that respond to true expectations, but also the estimation

problems in Droge [16] [17], Eldar, Ben-Tal, and Nemirovski [18], and Hansen [30], where they are the

ex post best from certain classes of estimators. An incompatible example, however, is the “predictive

entropy regret” approach of Sweeting, Datta, and Ghosh [64], which benchmarks against a specific act,

thereby is not menu dependent, and in the terminology of (economists’) decision theory, rather looks

like maximin utility with a specific, state dependent utility function.

The word “regret” resounds in everyday language, and some readers may accordingly be interested

in it from the vantage point of psychology or behavioral economics. From that perspective, one may

critically remark that regret here benchmarks against an “omniscient” ex post stage in which the

true state of the world has been revealed. This does not correspond to a situation that the decision

maker anticipates to ever experience, so one may hesitate to identify this paper’s notion of regret with

anticipated feelings. If the latter are a core motivation, one may want to explore regret preferences that

benchmark against what the decision maker will, in fact, learn from outcome realizations. This is the

motivation of Krähmer and Stone [35]. Interestingly, it can lead to preferences against information:

Of two otherwise identical acts, the one whose outcomes are less correlated with, and hence less

informative about, other acts’ potential outcomes may be strictly preferred. The approach has not, to

my knowledge, been axiomatized.

A well known invocation of regret in economic theory is due to Loomes and Sugden [38, see also

Fishburn [21], Sugden [63]]. This approach has in common with the current one that regret is evaluated

from an omniscient view; some papers partially justify this by imposing independence of outcome lotter-

ies across acts, thus removing one wedge between the “realistic ex post” and the omniscient information

stage. Major differences to the present perspective are the imposition of a concave transformation of

regret and the use of subjective priors rather than maxmin-operators. Indeed, the dichotomy of risk

versus ambiguity/Knightian uncertainty is not emphasized in this approach, and the relevant papers

switch between imposing objective probabilities (Loomes and Sugden [38]) and a Savage environment

(Sugden [63]).

Finally, Sarver [49] proposed a model of regret that embeds it in the recent literature on menu

dependent preferences. One difference to the present approach is that Sarver’s utility function combines

conventional utility with an additive regret penalty. More importantly, he follows Kreps [36] and Gul

and Pesendorfer [28] in axiomatizing preferences over menus; in the language of utility maximization,

the axiomatization is of the value functional. For these authors’ motivation, this is an ingenious device.

For the present paper’s notion of regret, its use would be less obvious because the minimax regret

value functional has an unusual interpretation. If choice problem  causes more minimax regret than
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problem  , this may mean that learning is more valuable in  , and this intuition may well inform

a future axiomatization — but it does not imply that  is more desirable by any commonsensical

standard. Indeed, it could easily be the case that any option in  dominates any element of  in

utility terms. An instructive axiomatization of this value functional would, accordingly, have to be

quite different from the present contribution.

A Proofs

Lemma 1 Define  %  ⇔  ∈ ({ }) for constant acts, then % is a complete and transitive

preference that rationalizes  (Arrow [3]) and is easily verified to fulfil Herstein and Milnor’s [34]

axioms, hence the result.

Preliminaries to all subsequent results. Recall that lemma 1 applies. For any act  , define

the mapping (“utility act”)  ◦  : S 7→ R by  ◦ () ≡ R
()() and use the notation = [À]

as follows:  = [À] ⇔  ◦ () ≥ [] ◦ ()∀. Observe that in the statement of monotonicity,
[ ∈ ({ })∀] can now be written as  = . Also use the following shorthand: For any number

 in the (convex hull of the) range of  ,  is the constant act with corresponding utility value.

No information is lost by identifying every act  with  ◦  . To see this, fix any menus  and  0

such that there exists a one-to-one mapping ()0 : → 0 with  ◦  0 =  ◦  for every  ∈ . Then

 ∈ ()⇔  0 ∈ ( 0). To see this, consider ( ∪ 0). By INA, ( ∪ 0) ∩ ∈ {()∅}
and ( ∪ 0) ∩ 0 ∈ {( 0)∅}. Nonemptiness of  and monotonicity now jointly imply that

( ∪ 0) = () ∪ ( 0), and monotonicity (applied to  and  0) then implies the claim. With

abuse of notation, I therefore identify acts with utility acts, that is, I conflate  and  ◦  .
Nonconstancy of  is necessary for lemma 1, monotonicity, and nontriviality to be mutually con-

sistent. It implies that after normalization, −1(−1) and −1(1) can be assumed to exist. Hence,

any finite, Σ-measurable step function  : S → [−1 1] can be identified with a feasible act  . This
specifically includes 0. Independence implies that (+(1−)0) = ()+(1−)0 = ().

Hence,  is homogeneous of degree one: For any menu  and scalar  ∈ (0 1), the menu  exists

and () = ().

Lemma 2 In this and the next two proofs, I only show “only if.”

Step 1: Defining a revealed preference relation over “regret acts.” For any menu  ,

let  denote the act with ◦ () = max∈ ◦(). By finiteness of acts and menus, this “oracle
act” or join always exists. Let M0 denote the set of menus  s.t.  = 0, i.e. menus whose ex
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post best possible utility is zero in every state. Let F− denote the set of acts with nonpositive utility
range. Define the relation % on F− ×F− as follows:

 Â  ⇐⇒ ∃ ∈M0 :  ∈ ()  ∈\()
 ∼  ⇐⇒ ∃ ∈M0 :  ∈ ()  ∈ ()

i.e. % is preference directly revealed from choice problems inM0. INA easily implies asymmetry of

Â and disjointness of Â and ∼ . To see transitivity, let  %  %  and let  be the menu in

which  %  is revealed, then INA and  %  imply  ∈ ( ∪ {})⇒  % .

To gather some more properties, assume that  is not bounded from below; the case where this

fails will be handled in step 3. Homogeneity of degree 1 of  then implies homotheticity of % :

 %  ⇔ [ % ∀  0]. Now assume also that there exist ¿ 0 and  ∈M0 s.t.  ∈ ();

the case where this fails will be handled in step 4. Then % is complete: Fix any acts  and , let 

and  be the act and menu whose existence was just assumed, and let   0 be s.t.  = , then

( ∪ { }) ∩ { } 6= ∅ by INA and monotonicity. Using completeness,  =  ⇒  %  follows

easily from monotonicity, and closedness of { :  + (1 − ) % } and { :  + (1 − ) - }
follows easily from mixture continuity. To see that  À  ⇒  Â , fix  and  with  À , then

 %  was shown. Suppose by contradiction that  ∼ , then homotheticity and monotonicity

yield that all acts ¿ 0 are mutually indifferent, in particular  ∼  for any   0. At the same

time, ({0 −1}) = {0} by lemma 1 and the normalization of  , hence 0 Â ; but both facts

together contradict mixture continuity upon adding 0 to the menu in which  ∼  is revealed and

then mixing 0 with −1.

Every act  is %-indifferent to exactly one constant act , henceforth also called its certainty

equivalent. To see that there exists at least one such act, let the constant acts   be s.t.  =  = ,

thus  %  % , then existence of ∗ s.t. ∗ + (1 − ∗) ∼  follows from completeness and

mixture continuity. That there is at most one certainty equivalent follows from À  ⇒  Â  and

transitivity. Hence, % can be represented by a real-valued function  that maps  onto the utility

value of its certainty equivalent.

Step 2: Characterizing  in terms of revealed preference over regret acts. The restric-

tion of  toM0 equals the choice correspondence induced by % :

() = { ∈ :  ∈ ⇒  % } = argmax
∈

( ◦ )

for all  ∈ M0. To see this, fix  ∈ M0, then  ∈ () ⇒  %  for all  ∈  , but also

 ∈ \() ⇒  Â  for some  ∈  . To extend the representation to arbitrary menus, fix any

 and let  = 1max∈∈S | ◦ ()|. Then  (and, by implication, − ) has utility range in
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[−1 1] and, therefore, exists. Use () = () and independence to write
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2
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2(−) (◦). It follows
that

() =
2


arg max

∈
2
+ 1

2(−)
( ◦ ) + 1


 = arg min

∈
( ◦ ())

where  = − and the last step also used homotheticity of % . By step 1,  has all the properties

claimed in the lemma.

Step 3: Taking care of bounded utility. Assume now that  is bounded from below, but

continue to assume that  ∈ () for some  ¿ 0 and  ∈M0; then it is w.l.o.g. to let  = −1

(possibly by rescaling ). Monotonicity then implies that % is complete on the domain of utility

acts with range in [−1 0] and, on this domain, has all the properties collected in step 1.
The crucial observation is that any ordering % on F−×F− which extends % induces  as choice

correspondence on M0, that is, { ∈  :  ∈  ⇒  % } = { ∈  :  ∈  ⇒  % } for any
 ∈M0. To see this, let  ∈ (), then  % , thus  % , for any  ∈  . Let  ∈ \(),
then  Â  , thus  Â  , for some  ∈ .

The appropriate extension is the homothetic one: For any   ∈ F−,  %  iff  % , where

 = 1max∈S max{| ◦ ()|  | ◦ ()|}. This is well-defined (and complete) because % orders 

and . It extends % because % is homothetic (up to completeness). Now step 2 goes through as

before.

Step 4: Taking care of a special case. Returning to the last paragraph of step 1 (and bearing

in mind that asymmetry of Â , disjointness of Â and ∼ , and transitivity of % were already shown),

continue to assume that  is unbounded from below but assume now that no constant act  ¿ 0 is

chosen from any menu ∈M0. Monotonicity and INA then imply that no act  ¿ 0 is chosen from

any menu ∈M0. Consider now any act  6= 0 that fails ¿ 0, i.e. it achieves zero utility in some

state, and some constant act  5 . Then monotonicity, applied to {0 }, implies 0 % , while the

fact that  is chosen from no menu ∈M0 implies that either  Â  or  and  are noncomparable.

Suppose 0 Â  Â , then mixture continuity, applied to 0 and the menu in which  Â  is

revealed, yields that  Â  for some   0, a contradiction (recall no constant act is chosen from

any  ∈M0). Thus, 0 Â  implies that  and  are noncomparable. Now suppose 0 ∼ , then

 Â  follows from INA upon adding  to the menu in which 0 ∼  is revealed. It follows that
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% can be represented by a set 0 ⊂ F− s.t. () =  ∩ 0 for all  ∈M0. Let  ∈ 0 and let

 = { ∈  :  ◦ () = 0}, then homotheticity and monotonicity imply that 0 ∈ 0 for arbitrary

 ∈ F−. Thus, 0 can be characterized by a set of events Σ0 ⊆ Σ s.t. 0 = {0 :  ∈ Σ0  ∈ F−},
and % can be characterized by identifying  with sup-distance (in utility terms) from 0, fulfilling

all the properties claimed.19 Step 2 goes through as before, and adaptation for the case of bounded

(from below)  is as in step 3.

Theorem 3 In view of step 3 in the preceding proof, assume that  is unbounded from below (or

that the % used in the following incorporates a homothetic extension). By the properties collected

in step 1 of lemma 2, % then fulfils all axioms used in Stoye [61, theorem 1(iii)] except for ambiguity

aversion and symmetry. Ambiguity aversion ( ∼  ⇒  + (1− ) %  for all  ∈ [0 1]) follows
easily from INA and ambiguity aversion of . It remains to derive symmetry ( %  ⇔  0 % 0,

where ()0 is as in the text). Thus, fix acts   ∈ F− and events 1 2 ∈ Σ s.t.  and  are constant

on 1 and 2. Define  = 1 ∪ 2 and  = max∈S max{| ◦ ()| | ◦ ()|}. If  ⊂ S, consider
 = {0−2 −1 −20}, then symmetry and ambiguity aversion jointly imply −1 ∈ ().

Consider now  = ∪{ }. As −1 is dominated by both  and , INA and monotonicity
jointly imply () ∩ { } 6= ∅, hence  %  ⇔  ∈ (). If  = S, the same argument
applies but starting from  = {01−2 −1 −210}. In either case, symmetry of % is implied

upon comparing  and  0, the menu generated from  by interchanging the consequences of 1 and

2.

Thus % is priorless maximin utility:  %  iff min∈S  ◦ () ≥ min∈S  ◦ (). Substituting
into lemma 2 yields

() = arg min
∈

max
∈S

½
max
∈

 ◦ ()−  ◦ ()
¾

as required. Individual necessity of most axioms is easy. For necessity of three events, let S = {1 2}
and let % be represented by  ◦ (1) +  ◦ (2).

Theorem 4 Let  be unbounded from below; the extension to bounded  is as before. Suppose that

no act ¿ 0 is chosen from any menu ∈M0, thus the choice correspondence is the one discovered

in step 4 of the proof of lemma 2. Consider any  ∈ Σ{∅S}, then 0 contains ({0−2 −20})
and therefore one of those two acts, but it cannot contain both because ambiguity aversion would then

imply −1 ∈ 0. Hence, either  ∈ Σ0 or S\ ∈ Σ0 but not both. At the same time, monotonicity
implies that Σ0 is closed under the formation of supersets. Now let 

∗ = 1{ ∈ Σ0}, then ∗ ∈ ∆S.
19This possibility may appear exotic, but one instance of it ( ∼ 0 iff max∈S ◦() = 0) rationalizes the “minimin

regret” choice correspondence that collects all potential best responses, and another one (there exists ∗ ∈ S s.t.  ∼ 0

iff  ◦ (∗) = 0) corresponds to Bayesianism with degenerate prior.
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The decision maker can be characterized as maximizing
R
 ◦ ()∗, fulfilling the theorem.20

Now assume that some  ¿ 0 is chosen from some menu  ∈M0, thus % has the properties

collected in step 1 of lemma 2. As % also transparently inherits ambiguity aversion, it remains to

show c-independence:  %  ⇔  + (1− ) %  + (1− ).

Axiom 9 implies that there exists no menu ∈M0 s.t.   ∈\() and +(1−) ∈ ()

for some (  ). To see this, assume that  exists. As acts and menus are finite, there exists a finite

partition Σ ⊂ Σ of S s.t. every act  ∈  is constant on every event  ∈ Σ . Define U =

{ ∈ R− :  ◦ () =  for some  ∈  ∈ S} and let ∗ =  ∪ {minU :  ∈ U   ∈ Σ}.
As every element of ∗ is dominated by some element of  , INA and monotonicity jointly imply

that ( ∪∗) ∩ = (). But ∗ has state independent outcome distributions, thus axiom 9

is contradicted.

Next, % fulfils what might be called c-betweenness for preferences:  ∼ ⇔  ∼  +(1−)
for all  ∈ (0 1). To see “⇒,” assume that  ∼  and let  be the menu in which this is revealed.

Then  + (1 − ) ∈ ( ∪ { + (1 − )}) by INA and ambiguity aversion, thus  ∈ ( ∪
{ + (1 − )}) by INA and the preceding paragraph’s conclusion, thus  ∼  + (1 − ). Now

suppose that  ∼  + (1− ) for some  ∈ (0 1). This implies  ∼ , establishing “⇐.” To see
this, recall that  has a (unique) certainty equivalent , hence  ∼  + (1 − ) by “⇒,” hence
 + (1− ) ∼  + (1− ) by transitivity, hence  =  (because  À  ⇒  Â ).

Next,  ∼  ⇔ +(1−) ∼ +(1−). For this and the following step, assume that   ¿
0; the preceding paragraph’s result can be used to extend indifference sets to boundary acts. For

 = 0, the claim is immediate from homotheticity of % . Else, suppose  ∼ , then  ∼  ∼ 

for a unique   0. By the preceding paragraph’s result and transitivity, +(1−) ∼ +(1−)
for any  ∈ (0 1). Let  = (1− + )  and  = (1−+), then +(1−) = [+(1−)]
and +(1−) = [+(1−)]. Homotheticity of % now yields  +(1−) ∼ +(1−).
The converse follows from the reverse argument, using the “if”-direction of c-betweenness.

Finally,  ≺  ⇔  + (1 − ) ≺  + (1 − ). Suppose  ≺ , then by monotonicity etc.,

there exists (a unique)  ∈ [0 1) s.t.  ∼ . The preceding paragraph’s conclusion implies that

 + (1 − ) ∼  + (1 − ) for all constant acts , which in turn implies  + (1 − ) ≺
 + (1 − ). If  Â , use the same argument with the roles of  and  reversed. Suppose

 + (1− ) ≺ +(1− ), then  ∼  would violate the preceding paragraph’s conclusion, and

 Â  would violate this paragraph’s preceding conclusion, hence  ≺ .

Individual necessity of most axioms is easy. For necessity of c-betweenness, let % be represented

by − £R ( ◦ ())2¤12, where  ∈ ∆S.
20The intuitive example is that ∗ is concentrated on one state ∗, but to see that permitting finitely additive measures

is crucial here (and for the theorem), let S = [0 1] with Borel-algebra and consider Σ0 = { : (0 ) ⊆  for some   0}.
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Remark 1 Straightforward from independence.

Theorem 5 Recall that theorem 4 applies. If Γ is a singleton, the decision maker is Bayesian and the

theorem is trivially true. Else, there exist distinct events  ∈ Σ that have positive probability under
some  ∈ Γ. It follows that −1 ∈ ({−10 −1 0 −1} for some   0; also using monotonicity,

% is complete on the domain of utility acts with range in [− 0]. For the remainder of this proof,
rescale  s.t.  = 1. Let FR collect all utility acts   with arbitrary (including positive) range, and
define the relation % on FR×FR as follows:  %  iff min∈Γ

R
 ◦ () ≥ min∈Γ

R
 ◦ (), with

Γ the same object that characterizes % . In words, % is the obvious extension of % to the larger

domain. Define the incomplete relation D by

 D  ⇐⇒  + (1− ) %  + (1− )∀ ∈ (0 1]  ∈ FR

Then by Ghirardato, Macheroni, and Marinacci [23, proposition 5], there exists a unique, compact,

convex, set of probabilities eΓ s.t.
 D  ⇐⇒

Z
 ◦ () ≥

Z
 ◦ ()∀ ∈ eΓ

Now, [23, proposition 19, used with  = 1] implies that eΓ = Γ. The theorem then follows from [23,

theorem 6] upon observing that D=D. The latter holds because the following two statements are
equivalent:

∃ ∈ (0 1]  ∈ FR :  + (1− ) ≺  + (1− )

∃  ⊇ { + (1− )  + (1− )} : () ∩ { + (1− )  + (1− )} = { + (1− )} 

To see equivalence, assume  + (1− ) ≺ + (1− ), then ( + (1− )) + (1− )−12 ≺
(+ (1− )) + (1− )−12 for any  ∈ (0 1) by c-independence of %. Choose  small enough s.t.
both (+(1−))+(1−)−12 and (+(1−))+(1−)−12 have utility range in [−1 0] and
also (1−) has utility range in [−1 1]. As % extends % , (+(1−))+ (1− )−12 is chosen

over (+(1−))+(1−)−12 in some menu ∈M0. By independence,

2
+ 1−

2
−12 is then

chosen over 
2
 + 1−

2
−12 in 1

2
 + 1

2
(−(1− )). (To precisely replicate the desired conclusion,

make the identification  7→ 
2
,  7→ −(1−)(4−2), and  7→ 1

2
 + 1

2
(−(1− )).)

Conversely, assume that  + (1 − ) is chosen over  + (1 − ) in some menu  . Let  be

small enough s.t.  has utility range in [−1 1], then independence yields


2
 +

(1− )

2
− 

2
 ≺



2
 +

(1− )

2
− 

2
 

thus  + (1− )−  ≺  + (1− )−  by homotheticity of % and the fact that % extends
% , thus the conclusion (with  = − (1− )).
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Corollary 6 Define D∗ by

 D∗  ⇐⇒
Z

 ◦ () ≥
Z

 ◦ ()∀ ∈ Γ∗

Then axiom 10 states that  D∗  ⇒  D , whereas axiom 11 states that  D  ⇒  D∗ . The claim
follows from theorem 5.

Theorem 7

Adapting the preliminaries. Lemma 1 continues to hold. This is shown in Stoye [60], the

argument is repeated here for completeness. For this paragraph only, define the relation D on

constant acts by  D  iff  ∈ ({ }). Then D is complete: Assume that  ∈ ({ }),
then by nonemptiness of  there exists  s.t.  + (1 − ) ∈ ({ }), thus  + (1 − ) ∈
({  + (1 − )}) by IIA for constant acts, thus  ∈ ({ }) by independence. D is also

transitive: Suppose by contradiction that  D  D  B . The latter implies (using independence

twice) that (1−+)+(1−) B (1−)++(1−) for all   ∈ (0 1]. IIA (for constant
acts) then yields ({  }) ⊆ { }, hence  + (1 − ) ∈ ({  }) for some  ∈ (0 1).
Independence, IIA, and  D  then imply  ∈ ({  }), after which IIA implies  ∈ ({  }),
a contradiction. Being complete and transitive, D rationalizes  on the restriction of F to menus in

∆X . Furthermore, D is von Neumann-Morgenstern utility because Herstein and Milnor’s [34] axioms

are easy to verify. The remaining preliminaries apply with no or minimal modification; in particular,

acts can be identified with utility acts.

Step 1: Defining an extension of % . Define % as before, of course with the understanding

that menus  are now convex. The argument that both % and any extension of it rationalize 

on M0 is unchanged. Aymmetry of Â still goes through: Suppose by contradiction that  Â 

is revealed in  and  Â  is revealed in  . Let Σ ⊆ Σ be a finite partition of S s.t. any
 ∈ ( ∪ ) is constant on any  ∈ Σ . (This is possible because, while  and  are not

finite, they are spanned by finite collections of finite acts.) Let  = min∈S∈∪  ◦ () and
 = ({ }∪ {0 :  ∈ Σ}), then all elements of  are dominated by elements of  and  ,

hence () ∩ { } 6= ∅ by INA and monotonicity, but then comparison of () with (( ∪ ))
or (( ∪ )) must reveal a violation of INA. The argument for disjointness of Â and ∼ is

similar. Again, % can be incomplete due to  being bounded from below, but this can be handled

as before. Assume, therefore, that  is unbounded from below. Next, fix any event  ∈ Σ\{∅S},
then symmetry and convexity imply −1 ∈ ({−20 0−2}), hence some constant act (and
then, by homotheticity, any constant act) is picked from some  ∈M0, avoiding the problem from

step 4 of lemma 2. However, % will fail to rank  and  if a proper mixture of them is strictly
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chosen over either. To circumvent this, % must be extended in a novel manner. Define the certainty

equivalent () of any act  ∈ F− as the constant act with utility value  = inf{ ≤ 0 :  Â },
with the convention that () = 0 if the set in this definition is empty. Let  %  ⇔ () = ().

Then monotonicity and INA imply monotonicity of % (i.e.,  =  ⇒  % ), and homotheticity yields

() = (). Also, suppose by contradiction that  Â () and let  be the menu in which this

is revealed. Continuity then implies the existence of   1 s.t. () ∈ (( ∪ {()}). By the
same argument as in theorem 4, the c-betweenness axiom applies to any menu  ∈ M0. It now

implies (( ∪ {()}) = (), thus  Â (), which together with monotonicity contradicts

the definition of (). Thus,  Â () does not hold.

To wrap up this step, note À  ⇒  Â . Suppose otherwise, then there exist À  s.t.  Â 

fails. Adding  to some menu  in which  is picked (existence of which was shown above), one can

conclude  ∼ , but now homotheticity and monotonicity imply that all constant acts  ¿ 0, and

in a second step all acts  ¿ 0, are indifferent, contradicting continuity by the same argument as in

lemma 2, step 1.

Step 2: Symmetry of Certainty Equivalents. Fix any events  ∈ Σ\{∅S} and constant
acts   ∈ F−, then () = ( ). To prove this, it suffices to show  Â  ⇔  Â  .

Let    w.l.o.g., initially assume that  and  are disjoint, and suppose  Â . I show below

that this preference is revealed in a menu  s.t. all acts  ∈  are constant on  and S\. Thus,
 Â   follows by applying symmetry to  . The reverse implication follows analogously. If 

and  are non-nested but overlap, one can similarly use symmetry to interchange the consequences

of  ∩   and  ∩ . If they are nested, say  ⊂  , then use symmetry twice, using  Â   as

intermediate step.

It remains to show that  Â  is revealed in a suitable menu  . To do so, restrict at-

tention to acts that are constant on  and S\, identify them with utility vectors ( ) 5 (0 0),

and let  be the utility value of , thus  = ( ). If  +   2, the claim follows because

 ∈ ({(2 0) (0 2) ( )}) by symmetry, convexity, INA, and monotonicity. Else, let  =

( − )( − ); this ensures that ( ) is a convex combination of ( ) and ( 0). Consider

choice from  = {(0 ) ( ) ( 0)}. ( ) Â ( ) ensures that ( ) ∈ (); it remains to

show that ( ) ∈ (). Suppose this fails, then () ∩ {( ) ( )} = ∅ by c-betweenness.

Note   2, thus ( ) ∈ ({( 0) (0 ) ( )}) through symmetry etc. as before, thus () ∩
({( 0) (0 ) ( )}) = ∅ by INA. Also using monotonicity, it follows that () contains some
 ∈ {(0 ) ( )}. On the other hand, let the constant act  be s.t. ( ) is a convex com-

bination of (0 ) and , then  ∈ ({(0 )  ( 0)}). Consider now the collection of menus

 = {{(0 ) ( ) +(1−) ( 0)} :  ∈ [0 1]}. Preceding arguments from this paragraph can
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be repeated to show that for any  ∈ [0 1], () intersects either {(0 ) ( )} (and then, by INA,
contains ) or {( ) + (1− )} (and then, by c-betweenness and given that it cannot contain
( ), contains +(1−)). Now consider∗ , where 

∗ = sup{ : ()∩{(0 ) ( )} = ∅}.
Either of  ∈ (∗) and 

∗+(1−∗) ∈ (∗) would violate continuity, so both are chosen, but

then ( ) is chosen by convexity and monotonicity, a contradiction.

Step 3: Characterizing Certainty Equivalents. Consider a partition of S into three non-
empty events {1 2 3} and restrict attention to acts that are constant on each of {1 2 3}; these
acts will be identified with utility vectors ( ) 5 (0 0 0). The crucial claim is that ((+)2 (+

)2 ) % (  ) for any   . To see this, it suffices to show that  Â ((+ )2 (+ )2 )⇒
 Â (  ). Thus, assume  Â (( + )2 ( + )2 ). Let  0 = {(0 0 ) (( + )2 ( +

)2 )  (  0)}, then by step 2, ( 0) ∩  {((+ )2 (+ )2 ) } = {} for  low enough.
Now consider  00 = ( 0 ∪ {(  ) (  )}).  00 is invariant under exchange of the consequences

of the first two events and 0 contains all fixed points of such an exchange, hence symmetry and convex-

ity jointly imply that ( 00)∩ 0 6= ∅, hence INA yields ( 00)∩{((+ )2 (+ )2 ) } = {}.
Now, if (  ) ∈ ( 00), then symmetry and convexity would jointly imply ((+)2 (+)2 ) ∈
( 00), a contradiction. Hence,  Â (  ) as required.

Recall that (  ) ∼ (  ) and (( + )2 ( + )2 ) ∼ (( + )2  ) from step 2 and

that (  ) % ((+ )2 (+ )2 ) from step 1. Together with the preceding paragraph’s finding,

these imply (  ) ∼ (( + )2  ). Iterating this argument and using monotonicity, one finds

that (  ) ∼ (  ) for any  ∈ ( 0], which together with monotonicity and  À  ⇒  Â 

yields (  ) 5 (  ). On the other hand, (  ) Â (  ) would violate monotonicity, hence

(  ) = (  )

This finding can be extended to general acts: Fix any act  ∈ F−, let  be the constant act
with utility value min∈S  ◦ () and let  be the event on which  =  . Then 


0 %  %  by

monotonicity, thus 

0 ∼  implies  ∼  , thus % is priorless maximin.

Step 4: Extension. To see that % extends % , suppose  Â  and let  be the menu in

which this preference is observed. Consider choice from  = ( ∪ {() ()}). Step 3 implies that
 = () and  = (), hence INA and monotonicity yield  ∈ (), but now () ∈ () because

 Â () was excluded. On the other hand,  ∈ () ⇒ () ∈ () by monotonicity, hence

()À (). The argument for  ∼  ⇒  ∼  is similar.

Step 5: Characterizing  in terms of %. See step 2 of the proof of lemma 2.
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