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Abstract

High-dimensional tensor-valued data have recently gained attention from researchers in eco-
nomics and finance. We consider the estimation and inference of high-dimensional tensor factor
models, where each dimension of the tensor diverges. Our focus is on a factor model that ad-
mits CP-type tensor decomposition, which allows for non-orthogonal loading vectors. Based on
the contemporary covariance matrix, we propose an iterative simultaneous projection estimation
method. Our estimator is robust to weak dependence among factors and weak correlation across
different dimensions in the idiosyncratic shocks. We establish an inferential theory, demonstrat-
ing both consistency and asymptotic normality under relaxed assumptions. Within a unified
framework, we consider two eigenvalue ratio-based estimators for the number of factors in a
tensor factor model and justify their consistency. Through a simulation study and two em-
pirical applications featuring sorted portfolios and international trade flows, we illustrate the

advantages of our proposed estimator over existing methodologies in the literature.
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1 Introduction

Factor models have become one of the most popular tools for summarizing and extracting infor-
mation from high-dimensional data in economics and finance (Fan et al. (2021), Bai and Wang
(2016), Stock and Watson (2016)). Traditional factor models are designed to manage large panel
data, where both cross-sectional and time series dimensions increase. These models admit a low-
rank structure and have a common-idiosyncratic decomposition, allowing for the identification of
significant variations within the panel of economic data.

In modern economics, researchers increasingly encounter vast, multi-dimensional datasets, or
tensor. For example, monthly import-export volume time series spanning various product cate-
gories among countries can be represented as a three-dimensional tensor, with unavailable diagonal
elements for each product category. Similarly, in portfolio selection, data often involve stock prices
and various firm characteristics over time across different firms, forming a two-dimensional tensor.
Additionally, macroeconomic studies on growth and productivity analyze multiple macro variables
at the country-industry level, enabling cross-country comparative analyses, which are challenging
with traditional panel data.

Statistical methods and economic applications for the high-dimensional tensor factor analysis
are still in their early stages of development. As in the classical panel setting, tensor factor models
typically assume low-rank structures, with Canonical Polyadic (CP) and Tucker structures being the
most common choices (see, e.g., Kolda and Bader (2009)). Recent studies have explored various es-
timation approaches and extensions. For example, working with Tucker decomposition, Chen et al.
(2022) considered two estimators based on the autocovariance matrices, while Han et al. (2022a)
extended these methods using an iterative procedure with the matrix unfolding mechanism. Chen
and Fan (2023) proposed an estimation method called a-PCA that preserves the matrix structure
and aggregates mean and contemporary covariance through a hyper-parameter . Chen and Lam
(2024) introduced a pre-averaging technique for the Tucker tensor factor model that significantly
enhances the model’s inherent signal strength under certain conditions. Chen et al. (2024) intro-
duced a semiparametric tensor factor model leveraging mode-wise covariates. In the context of
CP decomposition, Han et al. (2023) proposed an iterative simultaneous orthogonalization algo-
rithm with warm-start initialization, while Babii et al. (2023) employed tensor principal component
analysis (TPCA), assuming orthogonal factor loadings. Chang et al. (2023) developed estimation
procedure based on a generalized eigenanalysis constructed from the serial dependence structure of
the underlying process.

In this paper, we focus on a tensor factor model with a CP low-rank structure due to its parsi-
monious features. We propose an iterative projection estimation based on contemporary covariance
rather than autocovariance matrices. As highlighted by Chen and Fan (2023), autocovariance-based
methods rely on the assumption of non-zero autocovariances among individual factors, limiting their

effectiveness in scenarios with serially independent factors or weak autocorrelations in tensor data.



We develop inferential theory, establishing consistency, convergence rates, and limiting distributions
under relaxed assumptions. Additionally, we extend the eigenvalue ratio-based estimator (Ahn and
Horenstein (2013)) for latent dimensions to tensor factor models and show estimation consistency.

The remaining sections of this paper are organized as follows. Section 2 introduces the high-
dimensional tensor factor model with a CP low rank structure allowing for nonorthogonal loading
vectors. In Section 3, we present an iterative projection estimation procedure and two generalized
eigenvalue ratio-based estimators for the number of the latent factors. Section 4 establishes the
consistency and limiting distributions of the estimated loading vectors. We assess the finite sample
performance through simulation in Section 5 and provide two empirical applications in Section 6.

Finally, Section 7 concludes the paper with all mathematical proofs included in the Appendix.

1.1 Notations and preliminaries

In this subsection, we introduce essential notations and basic tensor operations. For an in-depth
review, readers may refer to Kolda and Bader (2009).
Let 2], = (2 + ... + 2})Y/9, ¢ = 1, for any vector 2 = (21,...,2,)". We employ the following

matrix norms: matrix spectral norm ||M|y = ol mzﬁxn |lzT My|s = o1(M), where o1 (M) is the
z[2=1,|y[2=1

largest singular value of M. For two sequences of real numbers {a,} and {b,}, we write a,, = b,
if there exists a constant C' such that |a,| < C|b,| holds for all sufficiently large n, and a,, < by, if
there exists a constant C' such that a,, < Cb,,.

Consider two tensors A € RA1xdex-xdx B e Rrixr2xxTn  The tensor product ® is defined as

ARBe Rdlxmxd;{xrlxmxm\;’ where

(A®B)iy,.icjivin = Airseine(B)jriin -

The k-mode product of A € R4 *%x*XdK with a matrix U € R™*% is an order K tensor of

dimension dy X +-- X dp_1 X mp X dpy1 X -+ X dg, denoted as A x; U, where

d
(A Xk D)is, g vz = O Aivinine Ui

ip=1

The mode-k matricization of a tensor A € R4**4K i denoted as maty(A) € R% X4k where

d= ]_[szl dj and d_j, = d/dj, = H]K:Lj#k d;. It is obtained by setting the k-th tensor mode as its

rows and collapsing all the others into its columns. And the vectorization of the matrix/tensor .4
is denoted as vec(A) € R%. Note that matg(vec(A)) = matg(A).



2 Model

We consider a tensor-valued time series )y € R xd2xxdg , where 1 < ¢t < T. Our focus is on a

tensor factor model with a CP low-rank structure:
T
yt:Efit(aﬂ@aﬂ"'@ai[()-i-gt, t<T, (1)
i=1

where ® denotes the tensor product, f;; is a one-dimensional latent factor, a;; denotes the dp-
dimensional loading vector, which needs not to be orthogonal. Unlike Han et al. (2023), we permit
arbitrary correlation structures among individual factors. Without loss of generality, we assume
|aixl|2 = 1, for all 1 < ¢ < rand 1 < k < K. The noise tensor & is assumed to be uncorrelated
with the latent factors but may exhibit weak correlations across different dimensions. The rank r
may either be fixed or divergent.

When K = 1, ), reduces to a vector, and model (1) becomes the classical factor model, exten-
sively studied in the literature (Bai and Ng (2002) and Stock and Watson (2002)). For K > 1, an

alternative approach is to vectorize data:
vec(Y,) = EF; + vec(&), (2)

where vec();) € R? with d = dids - - - dx and Fy = (fiz, for, - - ,frt)T € R". However, this method
ignores the tensor structure of the data and hence substantially increases the number of parameters
in the loading matrices from (dy + da + - - - + dj )r in the tensor case to (dids - - - dg)r in the stacked
vector version. Our proposed approach, modeling vec()};) as AF; + vec(&), A = (a1, ,a,) and
a; = vec(a;1 ® ae ® -+ ® a;x ), within our specific framework, yields improved convergence rates
due to its unique structure.

Consider an illustrative example of international trade flows, detailed in Section 6. The observed
YV forms a square matrix, where di = d2 = n and K = 2. Each entry );;; of V;, with ¢,j =
1,2,--- ,n, represents the volume of trade flow from country i to country j at time ¢. Thus, the ith
row represents data where country 7 is the exporter, while the jth column represents data where
country j is the importer. Figure 1 shows a time series plot of ); for G7 countries excluding EU
spanning from January 2008 to December 2014. Model (1) identifies r latent factors, analogous
to r trading hubs. Each country exports to these hubs with certain distributions (determined by
the loading matrix A;) and imports from them likewise (determined by the loading matrix Aj).
The element a; ; of Ay, where i =1,--- ,r and [ = 1,--- ,n, represents the export contribution of
country [ to trading hub 7. Similarly, the entry ag j,, of As, where j =1,--- ,rand m=1,--- ,n,
can be interpreted as the import contribution of country m to trading hub j. We allow the number
of trading hubs r to increase with the increase of n and T'.

In the literature, an alternative tensor factor model based on Tucker decomposition has been



Figure 1: Time series plots of the value of goods traded among G7 countriesU
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Notes: (1) sample period: January 2008- December 2014. (2) The plots only show the patterns of the
time series while the magnitudes are not comparable between plots because the ranges of the y-axis are
different.



explored (see, e.g., Han et al. (2022a), Wang and Lu (2017), Lettau (2023)):
Ve=Fi x1 A1 x - x Ag + &, (3)

where the core tensor F; € R™* >k ig the latent factor process in a tensor form, and A;’s are
d; x r; loading matrices. As discussed in Babii et al. (2023) and Han et al. (2023), unlike the CP
decomposition, the Tucker decomposition is generally non-unique, leading to significant identifica-
tion issues. Consequently, estimation results from model (3) may exhibit ambiguity, undermining
meaningful discussions of individual factors (Stock and Watson (2002)). In contrast, the CP tensor
factor model (1) yields a unique set of one-dimensional latent factors, which serve as natural inputs
for diffusion index forecasts and factor-augmented regressions (Bai and Ng (2006)). We regard the
CP tensor factor as a more parsimonious yet flexible and effective alternative. Further comparison

of the performance of these two tensor factor models will be presented in Section 6.

3 Estimation

We consider a two-step estimation procedure to derive the loading vectors and latent factors. This
approach begins with initialization through randomized composite PCA, followed by an iterative
refinement step utilizing an iterative simultaneous orthogonalization procedure.
We start by defining the contemporary covariance as the expected value of the outer product of
Vi
Y=E[D:®V]

- (4)
= Z Qi O an ®f, ay +E[E®&],
ij=1
where ©;; = E[fi; fj]. Its sample analogue, denoted as f], is computed as the average outer product

over T observations:

T
& Ve ® Vi
OESY - (5)
t=1
We aim to estimate the loading vectors by minimizing the empirical quadratic loss, formulated
as:
min - 0, %, a; K, a; , 6
4312052, LIST, Z ij &j=q it =g gl ( )
[aii]2=...=[aix|2=1 =1 F

where | A|r denotes the Frobenius norm of a tensor .A. However, this optimization problem is
non-convex and prone to multiple local optima. To counter this problem, we employ a two-step

approach. The first step focuses on obtaining a suitable initialization close to the global optimum.



The contemporary covariance X in (4) can be unfolded to a d x d matrix
Yo = AOAT, (7)

where © = IEFtFtT, Fy = (fu, - ,frt)T. This unfolding enables classical PCA estimation if the
columns of the loading matrix A are orthogonal. Our framework accommodates general non-
orthogonal a;’s and hence the PCA procedure introduces a bias component, which motivates the
second stage refinement. The accuracy of the PCA estimator hinges on the maximum correlation
among the loading vectors. When the additional orthogonality condition is imposed as in Babii
et al. (2023), the maximum correlation reduces to 0 and hence bias disappears. The first step,
termed intializaiton via randomized composite PCA, is detailed in Algorithm 1.

To further relax the eigengap assumption imposed in Babii et al. (2023) and Han et al. (2023),
we incorporate randomized projection into our composite PCA approach (Procedure 2). Ran-
dom projection, also known as random slicing (Anandkumar et al., 2014b; Sun et al., 2017) is a
well-recognized initialization method in noiseless tensor CP decomposition, which accommodates

repeated eigenvalues. We extend this approach to the tensor CP factor model.

Algorithm 1: Initialization via Randomized Composite PCA

Input : The observations Y, € R4**dx ¢ — 1 . T, the number of factors r, small
constant 0<cy< 1. N
1 Evaluate ¥ in (5), and unfold it to d x d matrix X.

2 Obtain 3\,-, Uu;,1 < i < r, the top r eigenvalues and eigenvectors of 3. Set 3\0 = o0 and

/\r+1 :A0~ N N N .

3 if mln{|)\l — )\’i—l‘v |)\z — )\i+l|} > C())\r then

4 Compute a;,"** as the top left singular vector of maty(u;) € R *(d/di) for all
1<k< K.

5 else

6 Form disjoint index sets I, ..., I from all contiguous indices 1 < ¢ < r that do not
satisfy the above criteria of the eigengap.

7 For each I;, form d x d matrix f]j =D I Xgaﬂ/j\,;, and formulate it into a tensor
f)j e RAvx-xdixdix-xdx  Then run Procedure 2 on flj to obtain @ for all
7€ Ij, 1 < k < K.

Output: Warm initialization @, 1 <i<r,1 <k <K

Following initialization, we refine the estimation using an iterative simultaneous orthogonaliza-
tion procedure (Algorithm 3). This step aims to enhance estimation accuracy and extract latent

factors. The procedure is motivated by the vector factor structure of the denoised );:

Ziik = fautix + Veik, (8)



Procedure 2: Randomized Projection

Input : Noisy tensor = € RO xdxxdixxdx prank s number of random projections L,
tuning parameter v.

1 for /=1 to L do
2 Randomly draw a d; x d; Gaussian matrix 6 whose entries are i.i.d. N(0,1).
Compute = x1 X g+160 and compute its leading singular value and left singular vector
Ne, Ug-
4 Compute g as the top left singular vector of maty (i) € R *(d/(drdr)) | for al]
2<k<K.

Compute @y as the top left singular vector of = xfﬂ Aok XZ£K+2 pf—K -
| Add the tuple (ag,1 <k < K) to S.

7 fori=1 to s do
Among the remaining tuples in Sz, choose one tuple (ag, 1 < k < K) that correspond

to the largest |= XkK 1 g X%KK+1 agk K|l2- Set it to be Arzpca Aok
9 Remove all the tuples with max;<x<x |@ Z,ka“pcﬂ > .
Output Warm initialization a;,7*,1 <i<s,1<k <K
where
T T T T
Zt,ik:yt X1 bil X9+ Xp_1 bi,k*l Xk+1 bi,k+1 Xt * " XKb’iK? (9)
T T T T
Vt,ik :gt X1 b’il Xo o+ Xp_q bi,k—l Xk+1 bi,k+1 Xt " " XKbiK? (10)

B, = Ak(AgAk)_l = (bigy ooy br) € R®XT0 Ap = (ayg,...,ar) € R%*" and we have used the
fact that b;;, is orthogonal to all aj, j # @ by construction. Note that the orthogonalization projec-
tion, which takes place in all except the kth mode simultaneously in each computational iteration,
transforms the tensor )} to a di x 1 vector, reducing dimensions and noise substantially. This
transformation enables easy and accurate estimation of the classical vector factor model in equation
(8).

In practice, we don’t observe b;. and iterations can be applied to update the estimations. Given

(m—1)

the previous estimates @, ~’, where m is the iteration number, }; can be denoised via

m T(m)T T(m)T T(m—-1)T m—1)T
Zt(,ik):ytxlbz(‘l) X2"'Xk—1bg7k)_1 Xk+1bz(‘7k+1) Xf+2 " XbeK ))

(m)

for t = 1,...,T, and consequently, updated loading vectors @, ’ are obtained through eigenanalysis
based on the contemporary covariance E(Zl(le) =z Zt 1 Zt(rgc t(Z?T. The iteration continues
until convergence or the maximum number of iterations is reached.

The above estimation procedure assumes that the rank r is known. However, we need to estimate
r in practice. We consider two estimation procedures based on the eigenvalue ratio method proposed
by Ahn and Horenstein (2013).

For the first procedure, we unfold the sample contemporary covariance Sin (5) to a d x d matrix



Algorithm 3: Iterative Simultaneous Orthogonalization (ISO)

Input : The observations Y, € R4*~*dx t — 1 .. T, the number of factors r, the
warm-start initial estimates al(.,(j), 1<i<rand1l<k< K, the tolerance
parameter € > 0, and the maximum number of iterations M.

Compute B( ) A\éo)(ﬁg)ﬁﬁ;o))* (bg?c),. ,bfﬁ?) with A(O) (a g(,?, e ,&7(32) e R%*" for

k=1,. K Set m = 0.
repeat

=

2
3 Let m =m + 1.
4 for k=1 to K do
5 fori=1 tordo
6 Given previous estimates 65,7:_1), calculate
= X1 b( T g kalgijg)jl Xk+1g§jz;11ﬁ X2 - XKbgz l)T
_ (m (m) z(m)T

fort =1,..,T. Let Zszk TZt 1ka bik -
7 Compute /dl(.k ™) as the top eigenvector of E( {T)lk)
s || Compute B = (AT AU 1 U9 B0 it AP — @004l

)~ (m)T a(mfl)az(;nfl)TH2<€’

m
9 until m = M or max| <<, max <<k @ ik

Output: Estimates

~ ~(m) .
120 =a; , t=1,.,r, k=1, K,

it =V X1 ’B(m)T’ i=1,...,r, t=1,..,T,
k=1 Yik

T
V=Y ael ay", t=1,..T.

i=1




Y. Let 3\1 = :\2 == Xr > 0 be the ordered eigenvalues of 3. The CP tensor factor model (1)
can also be adapted to a vector factor model (2) with the same number of factors r. Thus, the

eigenvalue ratio-based estimator derived from the unfolded covariance matrix 3 can be defined as

~

A\,
U — aromax —-— 11
g s

1<i<rmax )\1,-‘,-1

and rpax is a selected upper bound.

Alternatively, we can define the mode-k covariance with the inner product:

T
& maty,(Y;) mat) (V) c Rk i
k ] T

t—

Let Xlk = XQk = e = S\Tk > 0 be the ordered eigenvalues of f)k The eigenvalue ratio-based

estimator using the inner product can be defined as

PP = max (71,7, . .., T ), (12)

ik
Ait1,k
where the number of spiked eigenvalues r; remains constant across different mode-k covariance.

where 7}, = argmax; ¢;<, We have adopted the setup in the CP tensor factor model (1)

Further details of these two procedures can be found in Algorithms 4 and 5.

Algorithm 4: Unfolded Eigenvalue Ratio Method

Input : The observations ), € R9*xdx ¢ — 1 . T, the upper bound of the number of
Eactors Tmax- N N R
1 Evaluate ¥ in (5), and unfold it to d x d matrix X, i.e. ¥ = mat[)(X).

2 Obtain S\i, 1 < i < rpax + 1, the top rmax + 1 eigenvalues of 5.
3 Obtain 7" by

A~ %
U = argmax =—.
1<i<rmax )\@'+1

Output: Estimate of the number of factors 7",

It is noteworthy that Han et al. (2023) explore a similar tensor CP factor model as (1), albeit
within a distinct setting where latent factors are assumed uncorrelated and noise follows a white
noise process. Methodologically, their approach rely on the autocovariance between V;_, and ),
where h > 1, whereas our method employs contemporaneous covariance. The autocovariance-based
method may not be ideal for datasets with low temporal dependence, such as asset return data,
which often exhibit minimal serial correlation possibly due to market efficiency.

Another closely related approach is tensor PCA proposed in Babii et al. (2023). They consider a

CP tensor factor model with orthogonal loading vectors. Unlike Tucker factor models, the identifica-
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Algorithm 5: Eigenvalue Ratio Method through Inner Product

Input : The observations ), € R4**dx ¢ — 1 .. T, the upper bound of the number of
factors rmax.
1 for k=1 to K do
2 Evaluate

c dexdk‘

& _ i maty,(V;) mat)] (V)
g T
t=1
3 Obtain /A\ik, 1 <4 < rmax + 1, the top rmax + 1 eigenvalues of f]k
Obtain 7y by

~

. Aik
T = argmax <
1<i<rmax )\7,+]_7k

5 Calculate 7P by
~i ~ A A~
P = max(71,72,..., k).

Output: Estimate of the number of factors 7P.

tion of CP factor models does not necessarily require orthogonality. Applying tensor PCA to models
with non-orthogonal loadings introduces a bias component of higher order than our first-stage ran-
domized composite PCA. Even when the loadings are orthogonal, our contemporary variance-based
iterative estimation exhibits a faster convergence rate than tensor PCA due to dimension and noise
reduction. A comparison of our estimator with the autocovariance-based estimator and tensor PCA

through simulation will be presented in Section 5.

4 Theory

In this section, we delve into the statistical attributes of the algorithms introduced previously. Our
theoretical framework offers guarantees for consistency and outlines the statistical error rates for
estimating the factor loading vectors a;i, where 1 < i < r,1 < k < K, given certain regularity
conditions. Considering that the loading vector a;; can only be identified with a change in sign, we

employ

Haikajk — aikaw\g =4/1— (&;aik)z = sup szam
zJ_a,-k

to quantify the discrepancy between a;, and a;p.
To present theoretical properties of the proposed procedures, we impose the following assump-

tions.
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Assumption 4.1. Let & = (&4, 801, - - -, Ept) be independent p-dimensional random vector with each
entry & independent and satisfying E(&;:) = 0, E(€2) = 1 and for 0 <9 < 2

max P (€| = x) < ¢1exp <—02x79) : (13)
(2

Let vec(&;) = HE;, where H is a deterministic matriz and p = d. The eigenvalues of the covariance
matriz of vec(&;) satisfies Oyt < Xa(Ze) < -+ < M(Xe) < Co where X = Bvec(E;)vec(&) T and Co

1S a constant.

Assumption 4.2. Recall Fy = (fig, ..., fr) |, © = B(F,F) and A = \i(©) for 1 <i <r. Assume
A=A ==\ >0. For any veR" with |v]|2 =1,

mtaX}P’ (’vT@fl/ZFt’ = x) < crexp (—cpx™), (14)

where c1,co are some positive constants and 0 < 1 < 2.

Assumption 4.3. Assume the factor process fi,1 < i < r, is stationary and strong a-mizing in t.

The mizing coefficient satisfies

a(m) < exp (—com™?) (15)
for some constant ¢y > 0 and y9 = 0, where
a(m) = sgp{‘]P’(Am B)—PAPB)|: Aeo(fis,1<i<r,s<t),Beo(fis,1<i<r,s=> t—l—m)}.

Assumption 4.1 aligns closely with the noise conditions presented in seminal works such as Bai
and Ng (2002), Bai (2003), Lam et al. (2011), Lam and Yao (2012), and others within the factor
model literature. For simplicity, we assume that the noise tensor remains independent across time
t, allowing for weak cross-sectional dependence. While incorporating weak temporal correlation
among the noise, as suggested by Bai and Ng (2002), is plausible, it substantially complicates
our theoretical analysis. Therefore, we defer this exploration to future research. Nonetheless,
our simulation studies demonstrate the robust performance of the proposed methods even under
conditions of weak temporal dependence.

Assumption 4.2 ensures the unique identification of all factor loading vectors a;; up to sign
changes. Unlike the eigen decomposition of a matrix, if some \; are equal, the estimation of the
loading vectors a;, isn’t subject to rotational ambiguity but only to the signed permutation of
loading vectors. Furthermore, Assumption 4.2 specifies that the tail probability of f;; must exhibit
exponential decay. Specifically, when v; = 2, it implies that f;; follows a sub-Gaussian distribution.

Assumption 4.3 is a widely recognized standard condition that accommodates a broad range of
time series models, including causal ARMA processes with continuously distributed innovations, as
further detailed in works such as Tong (1990); Bradley (2005); Tsay (2005); Fan and Yao (2003);

12



Rosenblatt (2012); Tsay and Chen (2018), among others.

While Assumptions 4.1 and 4.2 currently assume exponential tails for both noise and factor
processes, these conditions can be extended to accommodate polynomial-type tails (under bounded
moment conditions) when the number of factors r is fixed, albeit at the cost of a more complex
theoretical analysis.

Recall Ay defined in equation (10) with a;; as its columns, and A;Ak = (Oijk)rxr As o4 ) =

laix|3 = 1, the correlation among columns of A, can be measured by

0r = AL A — I 2. (16)

Similarly we use
§=[ATA- I (17)
to measure the correlation of the matrix A = (ay,...,a,) € R¥™" with a; = Vec(®kK=1aik) and

d =TT, dy. Let Gmax = max{dy,---dx}.
Theorem 4.1 below presents the performance bounds, which depends on the coherence (the

degree of non-orthogonality) of the factor loading vectors.

Theorem 4.1. Suppose Assumptions 4.1, 4.2, 4.3 hold. Let 1/y = 2/v1 + 1/v2, and 6 < 1 with &
defined in (17). Assume T' < Cexp (dﬁ/(2ﬂ+4)) and T < Cexp ((d/r)“/?).

(i). The eigengaps satisfy min{\; — i1, \i — Ai—1} < e\ for all 1 < i < r, with \g = 00, \p11 =0,
and ¢ is sufficiently small constant. With probability at least 1 — T~¢1 — d=C1 | the following error
bound holds for the estimation of the loading vectors a;i using Algorithm 1,

rcpcanrcpeca |

|a,,” " a,, — aika;ﬁHg < <1 +

©)
”1) 5+ &2 (18)

Ar A

foralll1<i<r, 1<k<K, where C1,Cy are some positive constants, and

+1logT + log T)Y/7 \idlogd M\ (dlogd
¢(0>:A1<«/T Tog G ?ﬁ) )ﬂ/ 1T°g +‘/T(Tog ) i1, (19)

(i1). The eigengaps condition in (i) is not satisfied. Assume A\ = A, and the number of random
projections L = Cd? v Cdr2A/AD)? - With probability at least 1 — T~1 — d=C1, the following error

bound holds for the estimation of the loading vectors a;,. using Algorithm 1,

N R T ¢(0)
|aiPal P — airallls < C3v/Omax + Cs . (20)
'

The first term of the upper limit in (18) and (20) arises due to the loading vectors a;; not being

orthogonal, which may be seen as bias. Meanwhile, the subsequent term in (18) is derived from

13



a concentration bound concerning random noise, thereby being describable as a form of stochastic
error. The condition T < Cexp (dﬁ/(2ﬂ+4)) and T < Cexp ((d/r)”l/z) is imposed primarily for
convenience. Eliminating this condition would result in a more complex convergence rate.

When the eigengap condition is not met, we employ randomized projection to determine the
statistical convergence rate as shown in (20), which is slower than the rate in (18). A broader result
than (20), permitting a more general eigen ratio A;/\, for part (ii), is detailed in the appendix.
In practice, since the sample covariance tensor includes both the average of signal-by-noise cross-
products and the average of noise-by-noise cross-products, it is uncommon to encounter nearly
identical sample spiked eigenvalues. Our simulation study demonstrates that while the original
composite PCA provides viable initializations when A1 = )., its performance is not as good as that

of randomized composite PCA using Procedure 2.

Remark 4.1. With minor modifications to the proof of Theorem 4.1(i), we are able to show

A roori Vad 1
AT AT T 1 1
|z a e — aika;\b = Op (()\l/)\ )0 + N < T + T) + AT + > (21)

In the typical strong factor models where A\ = A\, = d and r fized, the rate becomes Op(d ++/1/T +

1/d), aligning with the convergence rate for the vector factor model when § = 0.

Let the statistical error bound of the initialization used in Algorithm 3 be 1)y (for example, the
right hand side of (18)), and also let

- | [dilogd [dilogd 1
ideal L L 10g k 10g 4
P = max (A\/ T +\/ T § )\r> : (22)

Theorem 4.2. Suppose Assumptions 4.1, 4.2, 4.3 hold. Assume that dmax = maxp<i O < 1 with
Ok defined in (16), and r = O(T). Let 1/v = 2/v1 + 1/v2, d = dy -+ - d, and dpyin = ming<p di.
Assume T < Cexp (dﬂ/-(wﬂ)) and T < Cexp ((dmin/r)71/2). Suppose that for a proper numeric

min

constant C1 i depending on K only, we have

A r+logT  (r+logT)/” 3
C’1,k\/77¢0+01,1<< >7JJ2K3 /\1 (\/T+( 7% ) >1/}5< 2<p<1. (23)

Then, after at most M = O(log(1o/v %)) iterations of Algorithm 3, with probability at least
1—T-Y—dC, the final estimator satisfies

[a@fpa” — amaklz < Coxv' ™, (24)

foralll <i<r,1<k<K, where Cy g is a constant depending on K only and C is a positive

numeric constant.
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Again, we assume T' < Cexp (di/ifﬁ+4)) and T' < C'exp ((dmin/ ryn/ 2) primarily for simplifying
the convergence rate. It is important to note that the error bound g for initialization is intended
for each individual loading vector a;;. When applying Algorithm 3, which requires the inverse of
/Algflk, the condition /71y < 1 ensures a reliable initial estimate of the loading matrix ﬁk Although
the other components in (23) may seem complex, they are designed to ensure the error contraction
effect in each iteration. This ensures that as iterations progress, the error bound will approach the

desired statistical upper bound.

Remark 4.2. With slightly modifications to the proof of Theorem 4.2, we can show

la0as " — ainajy)2 = Op ( 3 aT + /\> : (25)
T '

In the typical strong factor models where A\ = A\, = d, the rate simplifies to Op(+/dmax/(dT) +1/d).

This rate is significantly faster than that found in the vector factor model.

We now demonstrate the feasibility of obtaining a more precise bound by closely examining the

leading order term. This process allows us to ascertain the asymptotic behavior of the estimator

1 (de  [ds

where P, | = Iy, — aikaiTk and © = (0jj)rx,, where O is defined in Assumption 4.2. This enables

a;. Specifically, we will establish that

~iso

T
. ~ 1
a0 — sign(ag,as5)ag = Pa,, L o.T E fit (& X ek bie)
urot=1

the determination of asymptotic distributions for linear forms of a;.
The following theorem shows the asymptotic distribution of a linear form of the factor loading
vector u

1<i<r.

a;x for some fixed vector u. Note that in the strong factor model, we have ©; = d for all

Theorem 4.3. Suppose the conditions in Theorem 4.2 are satisfied. Let Ay = \.. Assume that

liminfy, o0 | Py, 1tl2 >0, for each 1 <i<r,1<k<K, we have:

(1) If T/(dp©s) — 0, then
VTu" (aﬁg — sign(a° T ay,) - k) 4, N(0,02 ), (26)

u,ik

where Ui,ik = b} Sehik/Oii, hik = bik O+ Obi k41 O Payy 1uObig—1 O~ Obj1 € R and ©
represents Kronecker product.

(ii) [f dk@ii = O(T), then

Oju’ (@ — sign(@iy " au) - ai) = Op(1). (27)
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In Theorem 4.3, we focus on vectors u with the property that [P, 1u[2 > 0 when dj is
large, effectively presupposing that sin Z(u,a;;) > 0. Conversely, when sin Z(u,a;;) = 0, the
convergence rate of the estimated linear form is faster, and its asymptotic distribution is a blend of

X3 distributions.

Theorem 4.4. Suppose the conditions in Theorem 4.2 are satisfied. Let \y = A.. For each 1 <i <

r,1 <k < K, we have:

(i) With probability at least 1 — T~¢ —d=C,

1— (@  a)® < Coc (9", (28)
where il s defined in (22).
(i) If T/(dr©i) — 0, then )
T(1- @0 Y e (29
j=1

where @i, 1 < j < dj, are the eigenvalues of Sy Pay 1507, with Sy = 05'E[(& <K,

bie) (Er X foy bie) 7]

(iii) If dk@” = O(T), then
OF (1 (@i ai)®) = Op(1). (30)

Drawing parallels with traditional PCA is insightful; in PCA, a debiasing process is often nec-
essary to achieve asymptotic normality in linear combinations of the principal components, as
discussed in Koltchinskii and Lounici (2016, 2017); Koltchinskii et al. (2020). For the CP tensor
factor model, however, merely meeting the signal strength requirement 7'/(d;©;;) — 0 is enough
to render the bias inconsequential. This observation aligns with findings by Bai (2003) regarding
vector factor models.

The estimators are constructed with a specified rank r, although in the theoretical analysis, r
is allowed to increase. Practically, 7 can be estimated using the generalized eigenvalue ratio-based
estimators detailed in Algorithms 4 or 5. The asymptotic validity of 7" and 7P are established in
Theorem 4.5 below.

Theorem 4.5. Suppose Assumptions 4.1, 4.2, 4.3 hold and rmax 18 a predetermined constant no
smaller than r. Assume r = O(T) and Ar 2212 4 At =0(1). Then

P = 1) — 1,

P(FP = r) — 1,

as dp — o0 and T — o0.
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Theorem 4.5 derives the consistency of rank estimators 7" and 7P based on the eigenvalue

ratios. This can be viewed as a generalization of Theorem 1 of Ahn and Horenstein (2013) from

vector factor models to CP tensor factor models.

5 Simulation

In this section, we conduct empirical comparisons among different methods for estimating loading
vectors across various simulation scenarios, and verify the limiting distribution of the estimated
loading vectors. We assess the performance of the contemporary covariance-based iterative simulta-
neous orthogonalization procedure (CC-ISO) proposed in this paper, auto-covariance-based iterative
simultaneous orthogonalization procedure by Han et al. (2023) (AC-ISO), and tensor principle com-
ponent analysis (TPCA) by Babii et al. (2023). The auto-covariance considered by Han et al. (2023)
is defined by the following lagged-cross product operator:

| Ve ®@ W dy x-dge xdy X xdg
zh_]l«:[ s ]G]R .

In this section, we fix h = 1. The estimation error measures the angle between the estimated loading

vector and the true loading vector, computed as:

max @ity — aimay|2-

Throughout our analysis, the observations );’s are simulated according to model (1) with K = 2.
The true loading vectors are generated as follows: The elements of matrices ﬁk = (A1k, ..., 0pk) €
R%*" 1 < k < K, are drawn from i.i.d. N(0,1) distributions and then orthonormalized via QR
decomposition. If § = 0, set Ay, = ﬁk; otherwise, set a1, = @1 and a;, = (A1 + 0@) / |Q1k + 0k |y
foralli>2and 1 <k <K, with 9 =§/(r—1) and 0 = (29_2/K - 1) Y2 I our simulation study,
we vary the correlations between loading vectors through §. It is evident that an increase in § leads
to a higher degree of linear dependence among the loading vectors.

The factor processes f;; exhibit weak temporal dependence and are generated as an independent

AR(1) process multiplied by a scalar depending on d;,ds and r:
fit = wigit, (31)
where
® git+r1 = Pgir + €ir with ¢ = 0.1, Var(e) = 1 — ¢? = 0.99';

. wi:%X(T—i+1)\/d1Xd2.

IThe results with ¢ = 0.5 are reported in the appendix.
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In this case, the tensor factor model in (1) represents a typical strong factor model, where \; =
w? = (r —i+1)2dydz/25 = O(d) when r is fixed. In Appendix C, we provide the result for ¢ = 0.5.

The following three configurations are adapted from Babii et al. (2023) and Han et al. (2023)
with modifications made for comparative analysis of the empirical performances among TPCA, AC-
ISO and CC-ISO. In these configurations, (di,ds) € {(40,40), (40,60), (60,60)}, T" € {100, 300, 500}

and r = 3.

I. (Orthogonal loading matrix) Set § = 0 so that the columns of loading matrix Ay, are orthonor-

mal. Each entry of error term & is generated independently from N(0, 1).

II. (Non-orthogonal loading matrix) Vary 6 in the set {0.1,0.3,0.5} so that the columns of loading
matrix A are not orthogonal. Each entry of error term &; is generated independently from

N(0,1).

III. (Serial correlation in &) Set § = 0.2. The errors & are generated according to & = \Ili/ 2Zt111§/ 2,

where
- U =V, = {Ue,ij} with Ocij = 0.5|i_j|;
— vec(Z;) = ®vec(Zy_1) + Uy where Uy ~ i.i.d. N(0, I4,4,) and ® € R9192xd14z jg 5 diagonal

matrix with all diagonal elements equal to p.

We vary p in the set {0.1,0.3,0.5} to investigate the robustness of our algorithm under weak

cross-sectional correlation and serial correlation in the error term.

The following configuration aims to assess the robustness of our proposed algorithm under weak

factor structures.

IV. (Weak factors) Set r = 3, and § = 0.2. The error terms are generated according to & =
\I}}/zth/é/{ where

- Uy =0y = {Ue,ij} with Oeij = 0.5|i_j|;
— Zijt ~ 1.1.d. N(O, 1).

The scaling multiplier in factor process w; = (r — i + 1) x (d1d)"®, where a varies in the set
{2.5,3,3.5,4}. Note that when a = 2, the factor structure is considered strong. A larger «

indicates a weaker factor structure.

For each configuration, we conduct the experiment 500 times and present the box plots of the
results. Figure 2 shows the estimation errors for CC-ISO, AC-ISO and TPCA under configuration
I. Notably, CC-ISO consistently outperforms the other two algorithms across various dimensions.
The estimation by AC-ISO deviates significantly from the true value due to the weak signal in the

auto-covariance matrix resulting from the weak temporal dependence in the factor process.
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Figure 2: Boxplots of the estimation error over 500 replications under configuration I
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Figure 3: Boxplots of the estimation error over 500 replications under configuration II. Note: The
first panel shows the ratio of the estimation error of CC-ISO on AC-ISO. The second panel shows
the ratio of the estimation error of CC-ISO on TPCA.
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In Configuration II, we assess the impact of non-orthogonal factor loadings on estimations using
ISO algorithms and TPCA algorithm. Figure 3 shows the ratio of the estimation errors of CC-ISO to
AC-ISO (first panel) and to TPCA (second panel) across different values of ¢ and dimensions. The
error ratio of CC-ISO to AC-ISO remains around 0.15, indicating the superior accuracy of CC-ISO.
The ratio remains relatively stable because the signal part in AC-ISO, albeit small, also increases
with dimensions, resulting in limited improvements on the estimation. However, in the second
panel, the error ratio of CC-ISO to TPCA converges as dimensions increase. This is because TPCA
cannot identify non-orthogonal factor loading vectors, leading to stable estimation errors across
varying dimensions. In contrast, CC-ISO successfully identifies non-orthogonal loading vectors,

resulting in estimation errors converging to 0.

(d1. d;) = (40,40) (d1. d;) = (40,60) {d1, d2) = (60,60)
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Figure 4: Boxplots of the estimation error over 500 replications under configuration III

Figure 4 shows the ratio of estimation errors of CC-ISO to AC-ISO under configuration III,
designed to evaluate the robustness of proposed CC-ISO algorithm against serial correlation in the
error term. We observe that CC-ISO’s performance improves monotonically as T' increases. In
contrast, AC-ISO’s performance deteriorates as the serial correlations in the error term strengthens.
This decline is due to the contamination of signals in the auto-covariance by the serial correlations

in the error terms. However, CC-ISO demonstrates robustness against such serial correlations.
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Figure 5: Boxplots of the estimation error over 500 replications under configuration IV

20



In Figure 5, we show the box plots of the logarithm of the estimation errors of CC-ISO algorithm
under a weak factor configuration. It is evident that the estimation errors decrease as T' increases.
Additionally, the rate of decrease in estimation errors depends on the value of a: a higher « leads to
a faster decrease. These results validate the robustness of the CC-ISO algorithm against a certain
degree of weak factor structure, in line with the conclusions drawn in Theorem 4.2.

We also examine the performance of Randomized Projection (RP) from Procedure 2 and compare
it with Composite PCA (C-PCA), which corresponds to Algorithm 1 but without the steps for
detecting close eigenvalues (Step 3, 5, 6, and 7 in Algorithm 1).

V. (C-PCA vs. RP-PCA) r = 5. dy = dy = d with d € {20,40,80} and T € {100, 200,500}. The
columns of factor loadings Ay are orthonormal and are generated as described in Configuration
I. Furthermore, the factors f;; are also orthonormal, generated using QR decomposition after
deriving from AR(1) processes. In this setting, the singular values of the common components
Z:zl w;gitai1 ® a;o are solely determined by w;. We set w; = w = 10 to ensure identical
eigenvalues of common components. Error terms are generated from i.i.d. N(0,1). Though
the top r eigenvalues of the ¥ are not identical due to noise, their differences are relatively
small, allowing randomized projection algorithms to ensure the accuracy of initial estimations.

For the remaining parameters, we set v = 0.8, ¢g = 0.1 and L = 2r2.

PR AL
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Figure 6: Boxplots of the estimation error over 500 replications under configuration V

Given the close empirical performances of CC-ISO under both initialization methods under con-
figuration V, our focus shifts to the estimation errors of the initial estimations, as illustrated in
Figure 6. RP algorithm outperforms the RC-PCA algorithm in terms of the accuracy of initial esti-
mations, particularly pronounced when d is smaller and T is larger. This occurs because the sample
covariance of Vec(&;) approaches the identity matrix as d decreases and T increases. Consequently,

5 is more likely to have eigenvalues that are closer together.
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Figure 7: Boxplots of the estimation error over 500 replications under configuration VI

The subsequent simulation verifies the robustness of the CC-ISO algorithm against weak mis-

specification of the model. The data is generated following the tucker factor model with K = 2:

Vi = Al]:tAgT + &,

where F; € R™" is the factor process in the Tucker factor model. In the CP factor model, F; is
diagonal with the ¥ diagonal element equal to f;;. In the mis-specification setting, we allow the
-)th

off-diagonal entries to deviate from 0. Denote the (i,7)" entry of F; by fiji. Let fijr = wijigije,

where g;;; is generated as specified in (31). The configuration is as follows:

VI. (Mis-specification) r = 3, (dy,d2) € {(40,40), (40, 60), (60,60)} and T € {100,300, 500}. The
loading vectors and error terms are generated as in Configuration IV, allowing for correlation
between loading vectors and weak cross-sectional correlation in the error term. w;j; = Vdidy /5
if i = j and wij = (d1d2)"®/5 with o € {3,4,5}. A smaller o indicates a more severe mis-

specification in the model.

Figure 7 shows the results under configuration VI. Given «, the estimation error decreases in T’
or in d, which illustrates the robustness of CC-ISO against weak mis-specification.
Next simulation is conducted to verify the results in Theorem 4.3(i). The configuration is as

follows:

VII. (CLT)r = 3. dy = da = d € {20,60,100}. For each d, we set T = 200 and w; = (r—i+1)+/d1d>.
For factor loading vectors, we let § = 0.2 to allow for non-orthogonal loading vectors. The
error &; j+ are generated as in Configuration IV to allow for weak cross-sectional correlations.
We simulate the distribution of a;; in (26) with ¢ = 1, & = 1 under three choices of u:
uy = 1/Vd, ug = [1,0,0,...,0]T and us = [0,1,0,0,...,0]7.
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Figure 8: QQ plots and histograms of v7Tu' (al5° — sign(aly " ak) - aik) /ou,ix under Configuration VII.
Note: 1. The row displays the results for w;. The column shows the results for different dimension d. 2. The
red curve plots the distribution of standard normal distribution.
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Figure 8 shows the QQ plots and histograms of v/7Tu" (aﬁf — sign(aﬁfTaik) . aik) Jou.ix derived
from Theorem 4.3 under Configuration VII. It is observed that the normalized empirical distribution
closely approximates the standard normal distribution.

Finally, we evaluate the performance of two proposed rank estimation algorithms: the unfolded
eigenvalue ratio method and the eigenvalue ratio method via inner product, over the following DGP

configuration:

VIII (Rank Estimation) r = 3. d; = ds = d € {20,40,60,80} and T € {100,300,500}. Set
0 = 0.2 to allow for correlation among factor loading vectors. Error terms are generated as in
Configuration IV to accomodate weak cross-sectional correlation. The factors are generated
according to (31) with w; = (r —i + 1)d and ¢ € {0.1,0.5}.

The results are presented in Table 1. The numbers in the table denote the relative frequency of
correct rank estimation over 500 replications. Both methods perform very well with accuracy levels

close to 1.

Table 1: Rank estimation

(20,20) 100
300
500

(40,40) 100
300
500

(60,60) 100
300
500

(80,80) 100
300
500

T e S S S S e T e e gy
e S S [ S Sy Gy [ Y
I T e T e S e S S L G e IR G S Ry S
e T e e S S S S G ey S ISy Y

Note: Relative frequency of correct rank estimation over 500 replications.

6 Empirical Application

6.1 Characteristic decile portfolios

In this section, in line with Babii et al. (2023), we conduct empirical analysis on the dataset col-
lected by Chen and Zimmermann (2022), consisting of over 200 characteristic-sorted portfolios from

previous studies of stock market anomalies. We utilize the August 2023 release of the database,
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focusing on monthly portfolio returns sorted into 10 deciles based on firm-level characteristics span-
ning from January 1990 to December 2022. As we only consider a balanced panel of portfolios, the
number of characteristics throughout the entire sample period is 127. Therefore, the dimension of
the tensor-valued time series ) we considered is 127 x 10 with sample size T' = 396. Additionally,
we obtain the risk-free rate from the Kenneth French data library to compute the excess return of
each portfolio.

We rewrite model (1) as:

T
Viji = Z fitai1 jaiag + Ejis (32)
=1
where )} j; is the excess return of the I*'_decile of the j*® characteristic at time t = 1,...,T; f; are

the systematic risk factors; factor loading a;1 ; determines the heterogeneous exposure of the gt
characteristics to the i*" risk factor; loading a;9; determines the exposure of the [*h decile to the
it" risk factor. In this model, all loading vectors are normalized to 1, with f;; absorbing all scales
of loadings. We use the generalized ratio-based method as well as the screen plot to select 3 as the
number of factors.

We estimate the factor model in equation (32) employing various algorithms: TPCA, CC-ISO,
AC-ISO with h = 1, generalized eigen-analysis based estimation (GE) proposed by Chang et al.
(2023) with K = 1, and the AC iterative projection based on tucker decomposition (Tucker-AC-IP)
by Han et al. (2022a) with h = 1 and rank (3, 3). We compare the estimates as well as the R-squared
obtained from these different algorithms.

Table 2 reports the summary statistics of the estimated loadings @;1, which determine the ex-
posure of characteristics to the three latent factors. The statistics for TPCA closely align with
the empirical results documented in Babii et al. (2023). Across all algorithms, the loadings on the
first factor are consistently positive with relatively small standard deviations. However, while a1
and a3 ; demonstrate approximate symmetry around zero in TPCA, with approximately half of the
loadings being positive, they exhibit significant skewness in the ISO algorithms, with their means
deviating from zero. In the case of the GE algorithm, @y ; displays high skewness whereas a3 ; shows
an approximate symmetry. Specifically, around half of the loadings are positive, and the maximum
and minimum values of @3, are approximately symmetric about zero. Similarly, Tucker-AC-IP
algorithm also exhibits approximate symmetric patterns in the second factor loading vector.

Table 3 displays the R? of the estimation of Model (32) across five algorithms. In this section,
R? is defined as: R

R*=1- w
1Y%
where 5) is the demeaned tensor of ) with the ¢ entry defined as )N/t =Y — % Z?:l Vs

Among the four algorithms for the CP factor model, it is observed that the CC-ISO algorithms
achieve the best fit to the model, exhibiting the highest R-squared values. Comparatively, within
the ISO algorithms, CC-ISO outperforms AC-ISO, yielding higher R-squared values. However, the

)
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Table 2: Summary statistics of estimated loadings a;; specific to characteristics

Max Mean Min Std >0

CC-ISO
ai; 0.065 0.088 0.107 0.009 1
az; 0.087 -0.068 -0.212 0.058 0.134
as; 0.049 -0.073 -0.188 0.050 0.063

AC-ISO
aip 0.038 0.087 0.126 0.019 1
az; 0.063 -0.070 -0.208 0.055 0.087
as; 0.148 -0.044 -0.230 0.078 0.276

TPCA
ap; 0.108 0.088 0.064 0.009 1
az; 0.275 0.003 -0.230 0.089 0.559
as; 0.186 0.006 -0.348 0.089 0.496
GE
ap; 0.181 0.08 0.001 0.033 1
azy1 0.245 0.059 -0.087 0.067 0.803

)

as; 0.301 0.006 -0.291 0.089 0.520

Tucker-AC-IP
a;p  0.14 0.09 0.066 0.01 1
az; 0.286 0 -0.295 0.089 0.409
as; 0.263 -0.002 -0.187 0.089 0.457

Note: > 0 denotes the ratio of positive entries in each loading vector.

Table 3: R-squared across different algorithms

Method CC-ISO AC-ISO TPCA GE Tucker-AC-IP
R? 0.853 0.844  0.739 0.776 0.878
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Figure 9: R-squared of the rolling-sample study on characteristic decile portfolio returns across five algo-
rithms. Note: The first panel shows the results of CC-ISO, TPCA and Tucker-AC-IP. The second panel
shows the results of AC-ISO and GE.

TPCA algorithm displays the lowest R-squared value at 0.759.

Given that Tucker decomposition entails a larger number of factors compared to CP decom-
position, it is not surprising that Tucker-AC-IP yields higher R? than all algorithms based on CP
decomposition. Nonetheless, the degree of improvement is modest, with R? increasing by only 2 to
4 percent when adopting the Tucker factor model. This observation suggests that the characteristic
decile portfolio data might possess a CP-like factor structure.

We also conduct a rolling-sample study on portfolio excess returns, where each rolling sample
spans 120 months, resulting in a total of T'— 120 = 276 rolling samples with the first rolling sample
from January 1990 to December 2000. Within each rolling sample, we estimate the CP factor
model in equation (32) using four algorithms and compute the sample R?. For comparison, we also
calculate the sample R? under tucker tensor factor model using Tucker-AC-IP algorithm .

Figure 9 illustrates the results of the rolling R2. The first panel shows the results of the algo-
rithms for the CP factor model based on contemporary covariance matrix, alongside the Tucker-
AC-IP algorithm for the Tucker factor model. Meanwhile, the second panel presents the results of

algorithms for CP factor model based on auto-covariance matrix.
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The three curves in the first panel exhibits a similar pattern: fluctuations with an overall increas-
ing trend between 1990 and 2000, followed by a sharp rise between 2000 and 2003. Subsequently,
they revert to fluctuation after 2003. However, the rolling R? of CC-ISO consistently outperforms
that of TPCA across all rolling samples. Interestingly, while the Tucker factor model demonstrates
the best fit in the full sample, it does not outperform CC-ISO in the rolling sample study, particularly
in the rolling samples prior to 2000 and after 2008.

In the second panel, both AC-ISO and GE algorithms show significant fluctuations in R? starting
after 2010, which coincides with the COVID pandemic period. Tucker-AC-IP, which also relies on
auto covariance matrix estimation, exhibit milder fluctuations during this period. Before 2008,

AC-ISO’s R? follows a smoother pattern compared to the GE algorithm.

6.2 Aggregate international trade flow

Understanding the pattern and evolution of international trade flow is essential for a broad range
of economic activities including policy-making, economic forecast, and firm-level optimization. In
this study, we apply the CP tensor factor model to the international trade flow data, where loading
vectors and latent factors are estimated simultaneously.

We use monthly aggregate import and export volumes of commodity goods from January 1991
to December 2015, including a total of 172, 800 observations. The data comes from the International
Monetary Fund (IMF) Direction of Trade Statistics (DOTS) and involves trade among 24 countries
and regions. These include Australia (AU), Canada (CA), China Mainland (CN), Denmark (DK),
Finland (FI), France (FR), Germany (DE), Hong Kong (HK), Indonesia (ID), Ireland (IE), Italy
(IT), Japan (JP), Korea (KR), Malaysia (MY), Mexico (MX), Netherlands (NL), New Zealand
(NZ), Singapore (SG), Spain (ES), Sweden (SE), Taiwan (TW), Thailand (TH), United Kingdom
(GB), and the United States (US).

As discussed in Section 2, the latent factors can be interpreted as trading hubs while the factor
loadings represent import/export contributions to these hubs. Employing the generalized ratio-
based method and the screen plot, we determine 6 as the optimal number of trading hubs.

Table 4 presents the R? across 4 different algorithms for the CP factor model and 2 algorithms for
the Tucker factor model: the auto-covariance based algorithm for the Tucker factor model (Tucker-
AC-IP) with A = 1 by Han et al. (2022a) and the contemporary-covariance based counterpart
(Tucker-CC-IP). In the Tucker factor model, the number of dimensions of the latent hubs is selected
as (4,4), following Chen and Chen (2022). Among the algorithms for the CP factor model, CC-
ISO achieves the highest R2. AC-ISO follows closely behind, with a slightly lower R? compared to
CC-ISO. However, the TPCA algorithm fails to adequately fit the model to the data, resulting in a
negative R? value of -2.56.

To gain deeper insights into dynamic patterns, we conduct a five-year rolling study on the trade
flow data. Each rolling sample spans five years, starting from 1991 through 1995 for the first sample,

and progressing consecutively. Within each rolling sample, we estimate the factor loadings using
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Table 4: R-squared of fitting aggregate international trade flow data across different algorithms

Method CC-PCA AC-PCA TPCA GE Tucker-AC-IP  Tucker-CC-IP
R? 0.7951 0.7921 -2.56  0.5782 0.521 0.521

the CC-ISO algorithm proposed in this paper. We assume that the factor loadings remain constant
in each rolling sample and fix the number of factors at » = 6 across all samples. Each sample is
indexed by the mid-year of the five-year span.

Unlike the matrix factor model considered in Chen and Chen (2022), the factor loading vectors
in CP factor model are uniquely identified up to the sign change. Therefore, rotation analysis, such
as varimax rotation, is not applicable. Instead of applying varimax and interpreting latent hubs
by the dominant country/region, we analyze latent hubs based directly on their estimates from
the model. In our proposed algorithm, latent hubs are ranked by the corresponding eigenvalues of
the unfolded covariance matrix and we fix, with the first latent hub contributing the most to the
export/import volumes and variances. However, country contributions to each latent hub can vary
across different time periods.

Figure 10 illustrates the relationships between countries and latent hubs for three selected years.
The sizes of latent hub nodes are proportional to the strengths of the corresponding factors. The
relationships between countries and latent hubs, shown as dotted lines, are plotted using the loading
matrix on the export/import side after a truncation transformation. This is achieved by normalizing
the loading matrix so that the sum of all entries equals one. Therefore, each entry represents the
relative contribution of a country to a latent hub. The figure includes countries with the top
four contributions to any latent hubs. Some countries significantly contribute to more than one
latent hub, resulting in a stable number of countries on the export/import side, approximately
10. Countries are ranked by their total export/import volume to/from in-sample countries in the
selected sub-sample.

As shown in the plot, in 1995, the US had the highest export and import volume, dominating
Hub 1 on the export side and Hubs 1 to 4 on the import side. Hub 3 was significantly dominated
by China on the export side, with other participants including Japan, Germany, and Taiwan on
the export side, and the US, Hong Kong, and Korea on the import side, indicating deep trade
connections among these countries. Hub 6 was mainly utilized by European countries on both the
export and import sides, reflecting the impact of the foundation of the European Union in 1993.

In 2003, the US remained the country with the highest export and import volumes. However,
China surpassed Japan and Germany, becoming the country with the second highest export and
import volumes. On the export side, China actively participated in international trade within Hubs
1 to 4, along with the US, Germany, Japan, and European countries. The hub mainly used by
European countries experienced growth from 1995 and became the fifth largest hub in 2003. Hub 6
can be interpreted as the APEC hub, as it was primarily used by the US and Asian countries/regions,
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including Japan, China, Korea, and Taiwan.

By 2012, China had surpassed the US and became the country with the highest trade volume.
On the export side, Hubs 1 and 2 were dominated by China. Participants of Hubs 1 and 2 on
the import side were mainly from North America and Europe, indicating the growing importance
of China in international trade in the 2010s. Additionally, the composition of the hubs became
less geographically concentrated: while Hub 6 remained primarily used by European countries on
the export side, Canada and Mexico became significant participants in this hub on the import
side. Moreover, there was no hub predominantly dominated by Asian countries as in 2003. Japan,
Korea, and Singapore were important members of Hub 3, which was shared with the US, Germany,
the Netherlands, and France. This suggests that international trade became more global and less

regional by 2012.

7 Conclusion

Modeling high-dimensional tensor time series has gathered increasing attention recently, owing to
the availability of multidimensional datasets beyond the classical panel data structure. This paper
considers matrix and tensor factor models with a CP low-rank structure, offering a generalization
of classical vector factor models. We develop iterative simultaneous orthogonalization estimation
procedures based on contemporary covariance, preserving the tensor data structure. Theoretical
properties such as the rate of convergence and limiting distributions are investigated, assuming
each tensor dimension is comparable to or greater than the number of observations, and the tensor
rank might be fixed or divergent.

In contrast to auto-covariance-based estimation methods, we explore information from contem-
porary data and are also able to consistently estimate loadings and factors for uncorrelated tensor
observations where auto-covariance methods might fail. Additionally, we propose two generalized
eigenvalue-ratio estimators for rank selection and justify their consistency. A comprehensive simu-
lation study underscores the merits of our proposed method compared to existing methods. Fur-
thermore, empirical applications regarding sorted portfolios and international trade flows showcase

the practical relevance of our approach.
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Supplementary Material of
“Estimation and Inference for CP Tensor Factor Models”

Appendix A Proofs of Main Theorem

Proof of Theorem 4.1. Part (i). Recall S=7"1 23:1 Vi®Vi, © = EFFE, a; = vec(aj1 ®apn®
- ®aig), d = didy...dg. Let ey = vec(&). Write

Y= matbg (i) — ABAT + U*,

Let ©® € R™*" have the eigenvalue decomposition © = YN//NUN/T, where the diagonal matrix A de-
notes its eigenvalues. Let U = (uq,...,u,) be the orthonormal matrix corresponding to AV as in
Lemma B.1. We have |[AAT —UUT |y < § and |[AOAT —UAUT |5 < A18 by the applications of the
error bound in Lemma B.1 with A = A the first time.

Let the top r eigenvectors of S be U = (1, ...,1,) € R™*". By Wedin’s perturbation theorem
(Wedin, 1972) for any 1 < j < r,

|@;0) — uju) |2 < 2JAGAT — UAUT + 0*[a/Aj 2+ < (2010 + 2[ o) /A, (33)

where \; + = min{\;_; — A;,A\; — Aj+1}. Combining (33) and the inequality |AAT —UU |2 <6,

we have
la5a] —ajaf |2 <6+ (200 + 2[W*|2) /A +. (34)

We formulate each i; € R? to be a K-way tensor [7]' e ROxxdx et ﬁjk = matk(ﬁj), which is
viewed as an estimate of ajkvec(®l[;kajl)T € R%*(4/dk)  Then aﬁpca is the top left singular vector
of Uj,. By Lemma B.2,

Pl — ajpalil3 A (1/2) < ;8] — aja] |3 (35)
Substituting (34) and Lemma A.1 into the above equation, we have the desired results.
Part (ii). For simplicity, consider the most extreme case where min{\; — Ajy+1, \i — A\i—1} < ¢, for
all ¢, with A\g = 00, Ar4+1 = 0, and c is sufficiently small constant. In such cases, we need to employ
Procedure 2 to the entire sample covariance tensor 3. Let the eigenvalue ratio w := Ay /A = O(r).
Without loss of generality, assume ©17 = G99 > -+ > O,,.. In general, the statement in the
theorem holds for number of initialization L > Cd? v C’d7‘2wQ7 where a v b = max{a,b}. We prove

the statements through induction on factor index ¢ starting from ¢ = 1 proceeding to ¢ = r. By the



induction hypothesis, we already have estimators such that

~ A~ T .
aﬁpcaaﬁpca _ ajkaJTkHQ < Coy, 1<j<i—1,1<k<K, (36)

in an event 2 with high probability, where

) RO R©) K=t A\ ) A\
¢y =C Tt <)\> (071 +6/51)()\>+61,

and R©) = ¢ is defined in (19) in Theorem 4.1.
Applying Lemma A.2, we obtain that at the i-th step (i-th factor), we have

N

JGedisy, — amalil, <68, 1<k<K,

in the event Q with probability at least 1 — T7¢ — d~¢ for at least one ¢ € [L]. It follows that this

estimator ay, satisfies

r K
S U2K ~ 2K ~
o], > | 3 onn ] [ahdw o)) ~ ¥ xiful,
J1,j2=1 k=1 9
K T K
> H @)’ DICI H aj ) (aj,dm)| — [0 x5 G,
k=1 2 (J1,72)# (1) k=1 9

where V¥ is defined by unfolding ¥* into a dy X do X -+ X dg X di X dy x --- X d tensor. Let
Y; = CR)/0;; + 63w. By (53) and the last part of the proof of Lemma A.2, as | ¥*|2/\, < ¢Z and
(1+61) TTr_y(Ok + i)w < @2, it follows that
R K
HE g 5%“2 > (1-¢5) 0 — (1+61) | [0k + i)\ — 650
k=2

2 (1 - 3¢(2))@n

Now consider the best initialization ¢, € [L] by using ¢, = argmax; |§] x2K Gsr|. By the calculation

above, it is immediate that

(1—3¢5)O;. (37)

S 2K~
HZ Kh=1 Wk 2 >

Let Gy, = vec(dp,1 ® - @, k). If |aia; — 65*&2* |2 = C¢g for a sufficiently large constant C, we



have that

+ [0 < o
2

T
T~ T
2 O,z (ay, e, ) (aj, )
Ji,j2=1

-
Te T
Z ®j1,j2 (aj1 Qag,, ) (ajg Qgy, )

J1,j2=1

S 2K~
HE Xk=1 Uyk

+ qf)?)@u + T‘I/QK)\l
2

< (1+ 51)(1 — CQ¢%)@M‘ + qbg@” + TI/QK)\l.

If v satisfies 125 (A1 /\) < cgd for a small positive constant ¢, as §; < ¢Z, we have

(1—C'¢5)Ou,

HE Xz[:(l Atk 2 S

where C” is a sufficiently large constant. It contradicts (37) above. This implies that for £ = ¢, we

have

laia] — @, af, |2 < Ceo.

By Lemma B.2, with a;;”“* = @y, in the event Q with probability at least 1 —7¢ —d~¢,

ArcpcaArcpcaT T
Qe g, — Qi Qg 9

<C¢y, 1<k<K.

This finishes the proof of part (ii) by an induction argument along with the requirements 2% (A1 /\,) <
cP3. O

Lemma A.1. Suppose Assumptions 4.1, 4.2, 4.3 hold and 6 < 1. Let S = AOAT + U* and
1/v =2/v1 4+ 1/v2. In an event with probability at least 1 —T~¢ — d~¢, we have

r+logT  (r+logT)V" dlog(d)  dlog(d)
*lla <
[ < C\ (\/ 7+ T +C 1

1 1
+ N2 ( d Oﬁ + ¢ Og ) (38)

Proof. Let Yo = T~ lzt 12” lfztfjtaz i E(:) = E(|fi,1 < i <r,1 <t <T). Define ¢, =



vec(&). Write

1
T

MZ

C(J)t)vec(yt)T

an

= AOAT + Z Z (fixfie — Efztf]t)aza + = Zetet

4,j=1 tl

+ = EZfztazet + — ZZf“feta

tlzl tlzl
= ABAT + A1 4+ Ao+ As + Ay.

That is, ¥* = A1 + Ag + Az + Ay.

We first bound [|Ay[2. Note that A; = A (é - @) AT. For any unit vector u in R”, there exist
u; € R" with |usll2 <1, j = 1,..., N such that max,|,<; minicj<n, . [u—ujll2 < €. The standard
volume comparison argument implies that the covering number N, = |[(1 + 2/€)"|. Then, there
exist u; € R", 1 < j < N, /3 := 7", such that |ull2 =1 and

|6 -6, —  max
1<j<N; 13

u] (8 - O)u| < (2/3)6 - O]
It follows that

16 -6, <3 max
1$]<Nr71/3

A~ ‘

u (O — O)uy|.
As 1/y = 2/v1 + 1/72, by Theorem 1 in Merlevede et al. (2011),

P (T ‘ujT@_lﬂ((:) — @)Q_I/Quj‘ > :L') < Texp (_aﬂ) + exp (— z> >

c1 coT

+ exXp | — C37T exp m . (39)

P(T|0712(6 - @)@—1/2H2/3 > ) < N2 T exp (Jﬂ) £ N2, g exp ( jT)

C

N x2 x’Y(l—’Y)
+ N7 13 €xXp CS—T exp 704 (loga)” .

Choosing = = /T (r + log T) + (r + log T)'/7, in an event Q; with probability at least 1 — T /2,

Hence,

1y
@71/2H <On/” + I;g(T) " C(r+ 1;gT) .



It follows that, in the event 24,

A1]> < AN - 0728 - ©)072

log T log T/
o ({/EET  rigni)

and,

Yol < [404T| + |4 (6 -0)AT|,

a4 (6-0) 7,

1y
<(1+0)A +CN («/”?gTﬂ”k&%T) ) (40)

= A~.

Note that Ay < A1
Next, consider |Aszll2. By Assumption 4.1 and Lemma A.1 in Shu and Nan (2019), we have

P (let|3 —Eles = 2) =P (¢ HTHE — BT HTHE > )

1 9

TF3/0 2\ 752
<4 o/ (R <4 o :
ex"( () ) ex"( (72) )

Note that Ele;|3 = B¢ HTHE = Etr(HTHEE) = tr(HTH) = tr(HH') = d, and |H'H|} =
|HHT |2 = ||Sc|% = d. Choosing z = d, we have

P (HetH2 = CVE) < 4dexp (—C’dzfﬁ) .

T :
Let N := Hetez‘/Tl{HetHQsC\/E}H? and of == | X,_, E(ete’jl{\let\lggcx/&})2H2' Then, by Assumption 4.1,
N < C%d and

o5 < T|E(eseq ere) )|z = TIE(HEE HTHEE HT) |2
< T|E(H&GE HTHEE HY e = TIE(E HTHEE HTHE) |
TE Y (HH)j&e6n Y (HH) &b

al g

A

< C(/)T Z(HTH)El + Z(HTH)jj(HTH)”
j?l j7l

= CT (|HTH + [te(H " H)P?)

< CypTd.



By matrix Bernstein inequality (see, e.g., Theorem 5.4.1 of Vershynin (2018)),

P ( 2 > m) < 2dexp <—x2/2> . (41)

02+ Nz/3
Choosing = = 4/T'dlog(d) + dlog(d), with probability at least 1 —d~°!,

T
T T
2 [etet Ljecto<ovay — Eere; I{Het\bscﬂ}]

t=1

dlog(d) s dlog(d)

<
G T T

2

(42)

T

1 T T

T 2 €08 Ljepeovay — Bered Lo, <ovay
t=1

< T : ez = CV/d}. Since 1

t >ovay are independent Bernoulli random
d9/ 2944 we have

{lecll2

Define M := {1 <
variable and log(7T) <

E|M]| = TP (HetHQ > O\/E) < 4T exp (—C’dw”’ﬁ) <T .
By Chernoff bound for Bernoulli random variables,
P(|M| = C) <exp(—T?). (43)

It follows that

'

T

2266 e psovay| = f”) <P (IMI max [ eq 3 > rv)

t=1 2
<P(M| > C) + P (M| < C, |M|max e[ > =)
< exp (~T%) + P (max e} > 2/C)

Choosing = = d, we have, with probability at least 1 — exp(—1"?) — T2,

T
1 d
t=1 2
Similarly,
P (HEetetTl{HetHQZc\/g}HQ >0) =P (ledls > CVd) < dexp (~C'd) <T 9. (45)



Combing (42), (44), (45), in an event {2y with probability at least 1 — T~ — d™“,

+ [Zel2
2

1
T Zeteg — Y

Zetet {le2>CVd }

T

1 T

TZ erel 1 {leelo<cvay — Beeer 1{||etu2<cﬂ}
t=1

-
+ HEetet 1{“675“220\/&}”2 + [|Ze]|2

dlog(d) L0y dlog(d)

<
C T T

+ Cy

Next, consider [As|2. Note that |A4]z is the same as |Ag|2. Let P(-) = P(:|F, ..., Fr) and
E(-) = E(:|F1, ..., Fr) be the conditional probability and conditional expectation given the factor

process, respectively. Similar to the derivation for |As]e, let

.
._ oo T
Ny = Z fitaies e, ,<ovay|
=1 2
T r T r
2 ._ iml PN IS iml L T ..T
of =max | |\ Y E Y fufjaie] e ., covm| | 2B D fafneal ajel 1., cva
t=1 i,j=1 9 llt=1 =1 9

It is easy to show

9

2

T r
Z Z fztf]taz i

o7 < C3T'dmax = 03

% Z Z fitfjta;raj

By matrix Bernstein inequality,

T

P(
t=1

T il T
- [2 fuaie{ L covay B ) funien 1{&2@%}]
=1 =1

x2/2
>a | <2dexp (——tf ).
x) P ( oZ T le/?,)

Choosing = = v/dlog(d)| X.7_, fira:|2 + r/log(d)oa, with probability at least 1 — d—¢

2

T
< Oy

log(d) |, o, Vilog(d)] Ti_y fuailo
2 .

1
T 2 Z finaie! Lo, p,<cvay — EZ fizaiel 1 {Hetuzscf} T

t=1i=1

As \/Flog(T)l/ " < 4/d, by Assumption 4.2, with probability at least 1 — T~

Zfitai — |FTAT |y < (14 0)[Frf2 < v/r(log(T) Y/ < vVdAy.
=1




By (40), in the event Qy, 02 < Td\;. Then, with probability at least 1 — T—¢/2 — T~ — d~¢4,

T r

1 - T
T Z Z 0000 Lo, y<ovay — B Q) firtied Lo ,covay| <
i=1 i=1 2

dlog \ﬁ Cs - dlog(zdﬂ)\/Tl.

Jledlle = 33) ~
2

= 5

Similar to (44),

(i

Choosing = = d+/A1, we have with probability at least 1 — exp(—=T2) — T~ — T,

Z fita;

=1

ZEfzt‘“et {leel2>CVa)

t=1i=1

23:) <IP’(|M]>C)+IP’<\M| <C,]M\m?x

dv/Ar

< Cp - T

Z Z fizaie; 1 (lel2>CVa |

tlzl

Thus, in an event 23 with probability 1 — 77 /2 — T7% — =4

T r
ZZ 1000 Ly, |, <ovay ~ EZfztalet {ler]2<Cvd}

|As]2 <

T r
ZZ iaie] 1 {Hetuzzcx/a}

t=11=1

ED /i dlog(d)ﬁ'

2

.
+ EE Firties e, 1, 0vay
=1 2

Therefore, in the event 21 N Qo N Q3 with probability at least 1 —T7¢—d ¢, we have the desired
bound for |U*|s.
O

Lemma A.2. Let \j/\, = w. Assume di < M\ and 63w < ¢ for a sufficiently small positive
constant c. Apply random projection in Procedure 2 to the whole sample covariance tensor S with
L > Cd? v Cdr®®. Denote the estimated CP basis vectors as ek, for 1 << L,1 < k< K. Then
in an event with probability at least 1 —T—¢—d—¢, we have for any CP factor loading vectors tuple
(aik,1 <k < K), there exist j; € [L] such that

Hajmka;,k - aikaiTkHQ < i, 2<k<K, (46)
H%,ﬁﬁg - ai1a£ H2 < i+ (0/01)w wK Lw, (47)

where 1; = CR©) /0, + 67w, RO) = ¢ is defined in (19) in Theorem 4.1, and 1 <i < r.

Proof. Without loss of generality, assume ©11 = G99 > -+ > 0O,,.. Then O,, = \,.,017 < A\1. Let



C:)ij =71 2?:1 fitfje and Xg = E& @ &. Write
. 1 &
S -
T;%®%

T T
K 2K a K 2K
= 2 9@y i @iy aje + D) (O — O) Oy aik @41 aji

i,j=1 i,j=1
1 T r 1 T r 1 T
K 2K
+ T;i;fit et ik @ & + T;;fit& Rp—rr1 Qi + (ngt ® & — Es) + Xe

r
= Z @ij ®£{=1 Ak ®il=<K+1 ajk + Al + AQ + Ag + A4 + A5,
ij=1

with a; gir = ai forall 1 <k < K. Let ¥ = Ay + Ay + A+ Ay + As. Let Z(0) = mat[K,l]fJ X1
x410. Unfold U e Rérxdzx-xdixdixdzxxdi to he an order 4 tensor of dimension (d/d;) x

(d/dy) x di x dy and denote it as \i, and also define Ak, k=1,...,5 in a similar way. Then

r
E(G) = Z @l](ajlﬁa]l)&laj 4+ ¥ xg3 ><4(9,
ij=1

where @; = vec(a;2 ® -+ a;jx). Let A= (@1,...,a,) € R(d/dv)xr
First, consider the upper bound of ||\Tl x3x40]2. By concentration inequality for matrix Gaussian

sequence (see, for example Theorem 4.1.1 in Tropp et al. (2015)) and employing similar arguments

in the proof of Lemma A.1, we have, with probability at least 1 —d—¢

H& X3 ><49H2 = 1> 00y (Ba).
Kl )
< C'max { Hmat(1)7(234) (&4)‘

, mat(Q),(134)(54)H2} ++/log(d)

gc\/dT( /dlozgﬁ(d) . dloﬁ(d)) o5,

where 6;,) is the (k, [)th element of 0, (A4)..u1 represents the (k, 1)th (3,4) slice of Ay, and mat1),(234)(*)

denotes the reshaping of fourth-order tensor into a matrix by collapsing its first indices as rows, and

)

the second, third, fourth indices as columns. In the last step, we apply the arguments in the proof

of Lemma A.1. Similarly, we have, with probability at least 1 — d~¢,

IS x5 x40, < Cy/log(d).



And, with probability at least 1 —T7¢ — d~¢,

~ o xx Ir+1ogT + log T)M
H(A1+A2+A3+A4)x3 ><49H2<CA1< L j?g +(T 01% ) >.4/log(d)

o (/D D) g

As di < A\, it follows that in an event Qg with probability at least 1 —T7¢ —d~¢,

H‘T’ X3 ><49H2 < O U*||or/log(d). (48)

Consider the i-th factor and rewrite Z(0) as follows

[1]

((9) = @“(a:l@azl)&laj + Z @j1j2 (a}—ll@ahl)aﬁ&;g + \i} X3 X40. (49)
(d1,J2)#(4,1)

Suppose now we repeatedly sample 6, ~ 0, for £ = 1, ..., L. By the anti-concentration inequality for

Gaussian random variables (see Lemma B.1 in Anandkumar et al. (2014a)), we have

, (50)

=

loglog(L)
) T _ _
P <121?£<L(a11 O ai1) 'vec(by) < +/2log(L) T os(D) 21og(8) | <

where © denotes Kronecker product. Let

ly = arg 1r£€a<xL(ai1 ©) aﬂ)Tvec(Gg).
Note that (a;1 ® a;1) ' vec(fy) and (Id% — (a1 ® as1)(ai1 ® ai1) " )vec(fy) are independent. Since the
definition of ¢, depends only on (a;; ®a;1) ' vec(dy), this implies that the distribution of (g2 — (a1 ®
ai1)(a;1 ® a;1) ")vec(dy) does not depend on /.

By Gaussian concentration inequality of 1-Lipschitz function, we have

1
P (]lrnjg}ér (ajll @ (Ij21)T(Id% — (aﬂ @ ail)(aﬂ @ ail)T)VeC(eg) = \/4 log(r) + \/2 10g(8)> < Z

Moreover, for the reminder bias term (aj,1 ® ajp1)" (@i @ ai1)(air © a;1) T vec(6y), we have,

D 05 (ai1 ©aj) (an © ain)(an © ain) Tvee(8y) - @, d;,
(J1,52)#(450) 2

< (ail ® ail)Tvec(Og) . sz{ (9 o (A;raﬂa;rlAl — 6“)) IZ{T H2
< (a1 @ aqn) Tvec(6,) [ A]5]©]2 [ Af aina

< (1 + 5/51)(5%)\1 (aﬂ ® aﬂ)Tvec(é?g),

A — el

10



where o denotes Hadamard product and e;; is a dj x d; matrix with the (7,7)-th element be 1 and
all the others be 0.
Thus, we obtain the top eigengap

(ain ©an) vec(00,)05 — | D, Ojijy ((aji1 @ ajpn) 'vee(by,) @,
(1,52)#(4,2) 2
log log(L
> (1 — 262w) ( 2log(L) — m — 2 log(8)> O — (¢4 log(r) + /2 log(S)) w6
og
log(d)@“‘, (51)

with probability at least %, by letting L > Cd v COr2w?
Since 6, are independent samples, we instead take L; = Lj1+- - -+L;p for M = [C) log(d)/log(2)]
and L;1,...,Lipy = Cd v Cr2v* . We define

Eskm) = arg max (a; @ail)Tvec(Gg), by = arglmax _(aﬁ @ail)Tvec(GZ).
We then have, by independence of §;, that the above statement (51) for the i-th factor holds in an

event ; with probability at least 1 —d~¢'. By Wedin’s perturbation theory, we have in the event
QO M QZ‘,

2

~ AT 2
Hag*ag* — a;a; 5. + 0w
1

where dy, is the top left singular vector of Z(6y,), and R©®) = ¢ is defined in (19) in Theorem
4.1. By Lemma B.2,

" CR©
Hag*,kaz*’k — aikag;gHz < 6. + 5%11}, 2<k<K. (52)
k23

Now consider to obtain a,, ;1. Write ¢; = CR(O)/G)ii + 5%10. Note that
K
& T K ~ 2K ~
X Xpg gy k Xk K+2 Oty H aé* kazk Oiiaiay + ¥ Xp_o Gpy ko Xk=f 12 Gty k

K
-
+ Z H ae* kajlk’ az*,kajgk) O} Aj11j,1 -
(d1,52) #(3,3) k=2

11



By Lemma A.1 and (52), in the event Qp n Qy,

|0 X3g Gy b XRE gy g ]y < 952,

K
H (&;*7kaik)2 > (1—yh)it
=2

Since
T ~ ~T T ~T T
max|a, e, k| = max|[d, jaiaikaj + g, 51— airai)aj
~T T ~T T T
S ?}‘;2? !ae*,kaik{\aikam\ + 1}11‘;2? H%,k(f - az‘kaz’k)HQH(I - az‘k%)%k”z
<A1 = P20k + hin /1 — 6F < O + i, (53)
we have
K K
~T T
H % kirk) (Ag, kjak) ©j1ja@ji10;,1 (1+01) H O + i) A
(41,72)#(4,i) k=2 2 k=2

(5/(51 K l)w@ii.

By Wedin’s perturbation theory,

. CRO) _
HCL[*JG/;*J - aﬂa; ||2 < 6. + (6/01)w + wiK L. (54)

Repeat the same argument again for all 1 <1 < r factors, and let L = Y. L; > Cd® v Cdr*” >
Cdrlog(d) v Cr2@*t11og(d). We have, in the event Qy n €4 A -+ A Q, with probability at least
1-T7¢—d™¢ (52) and (54) hold for all i.

O

Proof of Theorem 4.2. Recall A(m) (agk), . ,A(TZL)) e R&XT il(gm) = ﬁém)TA‘ém)? and B\,(Cm) =
A simhy=1 — @lm) 50y ¢ Rdor Let B(-) = B(-|F,1 <t < T) and P(-) = P(|F},1 < t <

T). Also let

ztfzt

an

Without loss of generality, assume ©17 = G99 = --- > O,,. Then E\, = O,,, > \,,EA; = O11 < \q.

12



Write

T
TZ : @ Vi
_ 1 &
:ZA ®k 1azk+2 Zfztf]t@k 1azk®k K+1 Gk + = Z&S@gt
i=1 i#] t 1 t 1
+ = ZZfzt@k 1 @ik @& + ZZfzt&f@k K+1 Qik
t 1i=1 t 1i=1
= DTN aik + A1+ Ay + Az + Ay, (55)
i=1

with Qi K+k = G4k forall 1 <k < K. Let ¥ = A1 + Ag + Az + Ay,
By Theorem 4.1, in an event )y with probability at least 1 — T~ — d=¢1,

~(0)~(0)T
Haz(k)az(‘k) — airay,)2 < o.
At m-th step, let
. e ’\(m)’\(m)—r o T . . B
T/Jm,uk = ||Clik Qi azkam“% mek = m?xq/}m,z,kv ¢m _ m]?X¢m,k' (56)

Let giv = bie/|bsell2 and 55" = 0™ /|55 5. Given a3 (1 < i < r,1 < £ < K), the (m + 1)th

il
iteration produces estimates a(lC m+1) , which is the top left singular vector of 5 X pe[2K\{k, K +k} bz(;n

or equivalently )y X pe[2K\{k, K +K} §Z.(£”)T. Note that & = Z;lej ®?fl aje + ¥V, with aj 4k = aj.

The “noiseless" version of this update is given by

5 X ge[2K]\ (kK +K} e = NGk + U X e\ (k. K+ k) Jit- (57)

At (m + 1)-th iteration, for any 1 < ¢ < r, we have

,

a ~(m)T N A(m)T

2 X pe[2K\ (kK +K} gﬁ”) = 2 )\j,iajkaka + W X pe[2K |\ {k, K +K} gﬂzn) )
j=1

where

Ni=N o [] alay”. (58)
te[2K\ [k, K +k}

13



Let

)\j,i = @jj H _]eg@(;’b))
Le2K)\{k,K+k}
1-— 5max - (Tl/Q + 1)1/}0/ V 1- 1/(4T)7
¢m€ =1A 1/}771,3\/% 5
’ 1—1/(4r)

Om = m?X ¢m,£-

~(m)

We may assume without loss of generality a; Za > 0 for all (4, ¢). Similar to the proofs of Theorem

3 in Han and Zhang (2023), we can show

o 1/2 -1
max 7" asle < o VA= 1700, P, < 1B < (VI - )

1—1/(
(59)
857" = bje/Ibjellally < (me/e)y/20/(1 = 1/(4r)). (60)
Moreover, (59) provides
max a8y | < e/ VU= 1/(r), Jafidyy”| > o (61)

as ag”” g(e =I{i= j}/Hb]Z [2. Then, for j # i,

2
AjifAii < (Al/@ii)ﬁ< Yo/ — 1/(4r) )

1 — Yme/A/1 —1/(4r)

Employing similar arguments in the proof of Lemma A.1, in an event {2; with probability at least

1—T7% we have
~ r+logT (r+logT)\/"
- @H2 <Cih («/ —+ = , (62)

In the event ;, we also have

l#k

Z f]l,tfjg, Efjhtfjmt

[r+logT  (r+logT)Y"
<y ®j1»j1@j2:j2 ( T + T .

It follows that in the event Qy, forany 1 < j <r

- r+logT  (r+logT)Y"
[Aj = 6551 < €165 (\/ Tt T -

14
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By Wedin’s theorem (Wedin, 1972), in the event €,

r 3 ~(m)T
2 HZ;’# Aj,iajka;k‘t + 2[ W X g2\ b K+ gz(g "y

.
kG2 < o~
I i

A(mA1)A(m+1)T
lag, —a

.
A Ag |5 maxj i [Njil + 41Y X e r]\ gk K +k) M P
< a2k’ 2@ :

(63)

To bound the numerator of (63), we write

A = Z Z fitfiat ®z 1 Qe ®e K+1 ol Xpe[2K|\{k,K+k} §f£”)T,

Jo2#t t 1
T T
A= 1 ~(m)T
L2 = Z Z fivtfit ®€ 1 At ®e K+1 @it Xpe[2K\{k,K+k} 93¢ = >
jlyﬁl t=1

1 T
A173 = Z Z fh,tfmt ®é 1 4510 ®€ K+1 Qjal Xpe[2K\{k,K+k} gz(g ™
J1#J2#t t 1

For any vectors Gig, Gie € R%, define

T
AQ,k(gifv.\g/ifaE#k) ZEt@gt XZ 1(#]691( XZ K+1£#K+k‘glf KedeXdk’
t 1

Ay k(glfag # k) fjh j# ’L) Xé(:l,ﬁ;ﬁk ‘“g“sz c R%x(r—1)

HMH

As Ay 1(Gie, Gie, £ # k) is linear in gy, ie, by (61), the numerator on the right hand side of (63) can

15



be bounded by

IV X pefo i\ (i, K+ ) a7y

~(m)

~(m)T ~(m) ~A(m
<A1 X gepar)\ b, K+ 3T s + 180k @5, 3570 # B2 + 20 sk (@5, € # K)|2
K
+ 2 Aol Aaa @ £ # B2 max [ ] |afegs”|

L#k
< D) ALl
q=1,2,3

2 + [A2x(gie, gie, € # k)2 + (2K — 2)m i

Ao |

S

+ 2| Az k(gies £ # k)2 + (4K — 4) k|

Asils

K
+ 2 Aglle [ [ (¥m,e/v/1 = 1/(40)) [ Agr(gic, € # E)|2

L#k

K
+ 2| Akl22K = 2)mp | | (Yme/v/1=1/(47)[Adils, (64)

l#k

where

s= _ max [ A2k (Gies Gies £ # k)2,
IGicll2=lgsell2=1,
Gie GireR%e

s = max [Agr(Gie,l # k)2, q=3,4
[Giell2=1,
JiveR%e

1Az

HAq,k|

Note that

K T K
. 1 N ~ . o
A1 = aip (H a;ggm) T Z fi - (Fizo J2 # 1) diag <H aL£9§7)=J2 # Z) (ajps 2 # 1)
(#k t=1 (#k

By (62), in the event €y,

r+logT r + log T/ K
[A11]2 £ AV A1Os (\/ Tg + ( 7% ) ) dem,e- (65)

l#k

Similarly, in the event €y,

[r+logT  (r+1logT)V/7\ &
[A12]2 < A/ A8 ( Tg + ( j% ) ) me,b (66)

l#k
r+ logT r + log T)/7 K
[A13]l2 < A1 (\/ Tg + ( 1% ) ) H¢31,€‘ (67)
L#k

=1 NT 2 .. T o _ =1 NT T . . . T :
Let Yoir=T""2_; ffaika; and Yo _;p =T >, Zjl,jz;/:i f]1tf32ta]1kaj2k- Then, in the event

16



Ql)

log T log T)Y/7
2 <O + 10y [ |28 L rdlos VTN AL Ze, (68)
T T i
[r +logT log T)1/7
2<)\1+01)\1( r+;g +(T+Oj% ) >::AT—1':)\1‘ (69)

Recall e; = vec(&;). Similar to the proof of Lemma A.1, we can show, in an event 3 with probability
at least 1 — T2 — d~ 2,

1 T dlog(d)  dlog(d)
[Ag ks < T Z eey | S T + T +1,
t=1 2
1 dlog( dlo
fzfit 4 g V g V@n’, (70)
t=1
1 < dlog dlog
Asels < |2 S0 5 # Tl | </ DB 3 4 BB AT
t=1 2

We claim that in certain events {23, with probability at least 1 — T~ —d=%, for any 1 < { < K,
the following bounds hold,

C1d log(d di log(d
|04 g € # )2 < ’fﬁ” o 28D o,
dj, log( Chdy log(d
|Az . (gie, £ # k)2 < Cy i g \/ i Lg)\/ Ois, (71)

d log( Crdy log(d
1ALk (gie, € # K)o < C1p/ =~ g dilog(d) s Lg)\//\j_

Define

dilog(d)  djlog(d) Oidrlog(d)  +/Oydg log(d) "
=4/ 7 + T +1+ T + T , R* = max max Ry i/©i;
(72)

As gjy is true and deterministic, it follows from (64), (65), (66), (67), (70), (71), in the event mg’:OQq,

for some numeric constant Cy > 0

I X pefo i\ (ke K4} AP

logT log T/
<02Rk,i+01,KR(0)¢m7k+CLK\/r@“H¢mZ(W_’_(T+ 0 T) )

O£k
r+ logT r+lo Tl/V dy. log(
+CI,KA1Hw3nK A/ & +( > KA : g \/ H¢m€a (73)
ik T T 04k

17



where R = $() is defined in (19) in Theorem 4.1. Substituting (73) into (63), by the definition

of ¢y, 1, we have, in the event r\g:qu,

~(m m T
JasVag T — aiallz
- 4(1 + Omax) A [ Tper, w?n,ﬁ 4CoRy;  AC; kRO ¢, .
T 02820, [\ /(1 = Omax) (1 — 1/(4r))a2E=-2  a?K-20; a?f—29;
401 Kx/i dk log d)
a2K 2@“ Bcwm \/
401K —— [r+logT  (r+logT)V"
£k
401K [r+logT  (r+logT)""
a2K—2 (A1/©ii) mef +
= T r
< Co,k Rit,i/Oii + Co,ik (VT10)hm i + Ca,k v/ AL/ Ar H YRy i/Oii
0#k
r+logT  (r+logT)Y"
+ Cac(M/A) [ [0 + Carc VAL A | | ome Q/T ! Tg ) )
A L#k
< Co,x R* + pihm, (74)

where the last inequality comes from condition (23) with p < 1. As R* < 1, we have R* < yideal
Note that as A, < d and the error bound of vy in Theorem 4.1, we have T = Vd = dmax- 1t follows
that, after O(log(to/'9)) iterations,

Umip S pideal, (75)

In the end, we divide the rest of the proof into 3 steps to prove (71).

Step 1. We prove (71) for the |Ag k(gie, gie, ¢ # k)|2. Let Py, = g @+ ®g;|7—k;+1 O 1g, @giT,k—l O
NO) ng e R%*d where ® represents Kronecker product. Also let erik = & xﬁ;k gie- Then
evik = Py, HE € R
By Assumption 4.1 and Lemma A.1 in Shu and Nan (2019), we have

P (lecikls — Elein] = z) =P (ETHTPT Py, HE — fTHTPT Py, HE = 1)

<4 '’ ’ aed
SO\ \JHTR] P, Hr

Note that Ele; |3 = B H' P Py HE = te(HH'P) P,) = di, and |H'P] P, H|} =

18



HHHTPQ—EICPQM HI% = d. Choosing x = dj, we have
9
P <H8t,ikH2 = C'\/ch) < 4dexp (_Cldlzq?+4> '

T
Let N := letine, 3 Lje, lo<cvaplz and of = | Xy Eerivel i lije, ,jo<cvary) 2. Then, by
Assumption 4.1, N < C?d}, and 0(2) < CoTdy. By matrix Bernstein inequality (see, e.g., Theorem
5.4.1 of Vershynin (2018)),

x2/2
P = < 2d —_—— ] .
( ) w) keXp( 03+va/3>

Choosing = = 4/T'dy log(d) + dj log(d), with probability at least 1 —d =,

T

T T
> [et,iket,ik1{\\et,iknz<crdk} - Eetviket,ikl{net,mHascrdk}]
t=1

di. log(d di log(d
< =\ (;?( )-I-C1~7lC (;?()

2

(76)

T
1
T T
T > CtikCrikL(je ilo<Ovr) ~ EetikCrikl{je, i l2<0vdr)
t=1

Define M := {1 <t < T : |eyxll2 = C/dg}. Since Lyje, iplo=Cvay) are independent Bernoulli

dqz/(219+4)

random variable and log(T") < , we have

_9
E|M| =TP (||et7ik||2 = C«/dk) < 4T exp (—C'd;ﬁ“) < T~
By Chernoff bound for Bernoulli random variables,
P(|M] = C) < exp (=T%).

It follows that

'

T

T 2
Z et’iket:ikl{\\et,ik\|22C’\/@} > x) <P (‘M’ mtax lezikllz = .CU)
t=1 2

<P(M|=C) +P <|M| < C, | M| max e i3 > :c)

<exp (—T¢) + P (m?x ezl = a:/C) .
Choosing = = dj, we have, with probability at least 1 — exp(—17"?) — T2,

d
<Cy- Tk (77)

2

T
1 T
7 2 Ctakeiinl{je, 1>y
T t=1 ’
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Similarly,

_9
> 0) = P (Jerale = OV < desp (~C'a7 ) < (7

T
P (HEfEmk@t,ikl{Het,ikuz/

Combing (76), (77), (78), in an event with probability at least 1 — T~ — d~ 1,

1 T

T T
T Z et,ikCr ik — et ikey
T ) )
t=1
T

T T
T Z €tikCrik L, lo<Ovr) ~ Eetviket:ikl{\\emk\\2<Cvdk}
t=1

+ |Eeyined ikll2
2

1A 1 (gie, gies £ # K)||2 <

+ | Py HH ' Py [
2

T
1
T D ikl whpsovayy| + HEet,ikezm
t=1 2
dy log(d dy, log(d
i log( )+02_ 1 log(d)

<
C T T

+ (s

Step 2. Now we prove (71) for |As x(gi¢, ¢ # k)|2. Let

L pp— 3 T
Ni = | fitly ik L{je, onlo<

o} := max {

It is easy to show

)

w2, T
Z Efiteriretiklije, ,ulo<Cvdr)

= 02 T
’ ZE‘fitet’iketvikl{“et,ikH2<C\/dk}
t=1 t=1

2

Ny < CN/dy | firaily

T
1 2
=2 fi
T=

o1 < C3Tdy, max {

1 T

2

9 72 it
) Tdkt:1

}::O'Q
2

z?/2
= < 2d -0 |-
o) <o (i)

Choosing = = +/dj log(d)| fit|2 + +/log(d)o2, with probability at least 1 — d~

By matrix Bernstein inequality,

P(
t=1

T
T ™ T
2 [fivtet,ikl{net,ikHasc\/m - Efi,tet,ik1{\\et,z-k||2<cvm]

2

log(d)og + /dy log(d)| firai 2

< Oy T

2

1 _
ol _ el
T > Fiterinlijeylo<ovary — Efiterinlije, o lo<ovar)
t=1

As \/rlog(T)Y" < /dy,, by Assumption 4.2, with probability at least 1 — T,

”fzt”2 s \/7 IOg 1/71 \/ < V dk@u
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Similarly, in the event €2y, 03 < T'dyO;;. Then, with probability at least 1 — 77 /2 — T7% — ™,

dy, log \/* d log(d)v/ O

< Cs T

1
T CEf el
7 2 firela e, wh<ovan) — Bfiteliulie, yp<ovir)
t=1 2

Similar to (77),

T
]P (
t=1

Choosing = = di+/0;;, we have with probability at least 1 — exp(—7"?) — T~ —T7%

N——

>C/dy}

> ﬂ?) <P(M|>C) +P (!Ml < G, [M[max | fuly - lesinlle =
2

< Cy- deT@n"

1 T
T Z fi,tet,ikl{Het,ik l2=C/di}
t=1 2

Thus, in an event with probability 1 — 77 /2 — T~ — g~

[As(gie, € # k)2 <

T
T T
Z firerik e, plp<ovagy — Efitlrinl{je, ila<ovar}

2

-
+ HEfi,tet,ikl{”et,ikHQ/

1 T
+| 7 Z Firlrinlfje, o=z
i 2

dk log \/7 dk log(d)\/ @“

<Cy
T

Step 3. Inequality (71) for |Ayk(gie, £ # k)l||2 follow from the same argument as the above step.
O

Proof of Theorem 4.3. By the definition of the iterative algorithm, after convergence to a sta-
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tionary point, a;. is the top eigenvector of the matrix

Sik = 5 X e\ (b, K +h} Dir

T K
—)\z 1azka ik T = Z it <H a;;:q\l(én)—r> air ® (gt X ee[K\{k} :q\z—;)

t 1 l#k

+ = Z fit (H aicd; > (& Xeerrp iy Gir) ® ik + — Z Et ® Et X ye[2rc]\(k, K +4} Jit

tl L#k tl

+ Z >\g za]ka]k + Z Z fyltszt ®k 1 A1k ®k K+1 Qjok X te[2K\{k,K +k} gzé
J#i J1#J2 t 1
T

+ = Z Z Fit ®21 @i @ E X geparc]\ (k. 144} Gip + = Z Z Fit€e @RE k1 Ok X eel2k ]\ (koK +k) e
t 151 t 1j#i

= Ai,iaikaik + U+ Wy + U3+ Uy + Vs + Ug + Uy

= Xi,iaika;k + \I’, (79)

where \;; is defined in (58), Gir = bie/|bicll2, and ¥ = 377, ¥;
Let P, | = 1, — aika; = aik,La;’L. By Theorem 4.2, the final estimates of a;;, satisfies, in an
event ) with probability at least 1 —7-¢ —d=¢,

|airay, — aipag o < Copldead, (80)

where yi9€al ig defined in (22). Using resolvent based series expansion of projection matrices (e.g.,

Theorem 1 in Xia (2021)), we have the following expansion,

1
1VP,, +~PF

Ak

VP,

A~ AT T 1
Akl — QikQp, =~—b @ik, L

Ak
i,’i i,l

(Pazk\IfP kL\IIPakL +PakL\I’Pazk\IJP ik, L +PakL\I’Pa l\IJPa“C)

7,,1

— — (Pa, 1V P,, VP, + Po, WP, | VP, + Py, VP, VP

Aik azk: )
1,0

+ R3(V). (81)

Moreover, [|R3(¥)l2 < C’lH\IfH?’/)\ < Cy(y9°h)3 under the event €.
Case (i). Let u = a;;. Then

~ A ~ 2 1
u’ (aikaiTk — aikaiTk) U= (a%aik) —1= —TGiTk‘I/Pa,-k,L‘I/Gik + al-TkRg(\I/)aik
1 T
— —XT (a;’l\llaik) (az;g’l\llaik) + a;»l;c’Rg(‘li)aik.
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By Theorem 4.2 and (80), in the event €2, Hx;la:k L Waglla < Coptdeal Tt follows that, in the event
Q

(@haix)” — 1 < Cy(pideal)2, (82)

From the condition (23) and (74), we have ¢'9l < 42 where 1 is the error bound for the
initialization. By the proofs of Theorem 4.2, i.e. the derivation of (74), we can show, in the event
Q,

1 .
T (\I/4 + \I/5 + \116 + \117) < 04(w1deal)2’ (83)
7,2 2
1 : 1 [ dilog(d d log(d
— U3 < C4<\/;¢0)¢1deal +Cy— k log(d) + ¢ log(d) +1], (84)
)\i,i 9 9” T T
L\Ijl i 1 i Firain @ (5t X ge[ K]\ {k} g'lé) < 04(¢ideal)2 + 04(\/;1/10)1/11(16&1
~ 1t € 1 = ’
/\m' G)zz Hg;ek(a&gil)T t=1 9
(85)
— ;- : i fit (€ X eeprery 9r) ® ain| < Ca()? + Cu(y/riho )4
g ) € 1 7 X .
Aii Oii [ Tper(agga) T & )
(86)
As aiTkJ_\Illaik = 0, in the event 2,
v ! T i fit (& x ) ®
~ Gk, 1 Y5k — a; = i g; ik | Qi
. : 1 [ dilog(d dy log(d
<C4(w1deal)2 + O4(\/;w0)wldeal + 0467 (k';_‘g() + k(,;g() + 1) . (87)
(3

Case (ii). Let u L a;. Define v = uP,,, 1. Then

u' (@, — amasy,) am = (u' @) (@am)
1

1
=~ Pay 1 Wiy, + m (u Pay 1 WPy 1 Wag — u' Poy 1 WP, Waig) + Ra(W)
1,0 /\i,z‘
1 1
=— Wa;, + ~ (UT\I/aik7laiT,€7L\Ifaik — vT\I/aika;c\Ifaik) + R3(P).

23



Note that, in the event Q, A7} [, < Coypldeal. By (83), (84), (85), (86), we have,

T
1 1
Sup (U \QikQp — QikQsr ) Qi — u Pai 1= fit gt X e[ K\ kY Ui ® agp | aip
ulaig ( g k) Oi; Hé#k(aigil) i T ; ( e[K]\{k} Z) ]
i i 1 [ dilog(d dy. log(d
< G2 4 Oy 4 Cg ( D 4 2 1) | (38)

Now, let’s move to the proof of Theorem 4.3. Without loss of generality, assume ajkaik > (. For

w such that liminfg, o || P,,, 1u]2 > 0, we have

ik,
u' (@i — aig) = u' Pay 18 + (u'ai) (agam — 1).
By (82),
(" aix) (aghin — 1) < Clul a2,
In addition, by (88) and (80),

T
1
al’ gt X el k} 9; ® ak | aik
G)iinfsék(a&gzl) * [ ; e[K1\) Sit)

sup
u

<CHPaik,lUH2 [(wideal)Q + (\/;wo)wideal + @L (dk log(d) + dg IOg(d) + 1)] )

U Palk,J_aik -

T T

Combing the bound above, we have

sup
u

1
T (A Tp .
u' (G — ag) — u' Py, fz g % g
i [ Trr(alygi) o [ Z ¢ (& Xeerrgny )

gCHPaik,J_UHQ [(¢ideal)2 + (ﬁ¢0)¢ideal + L (dk: IOg(d) + d; IOg(d) + 1>

oo T T + C||uTaikH2(¢ideal)2.
(%3

By (71) and @/ ai; > 0, if \/di/T » 1/y/Oy, i.e. Oy » T/dj, then the leading term in u' (@, — aix
ik

is

1

1
T
Oii He;ek(af]}gzz) FouL

@ a’Lk?

T
Z Jit (& X oe[r ]\ (k) gir)

T
Zfzt (& Xperr\ i} bw)] :

Thus, (26) follows from the central limit theorem of the above leading term.
Otherwise, 1/6;; is the leading order term of u' (@;; — a;;). Then we have (27).
O

Proof of Theorem 4.4. First, by (82), we have (28). Moreover, by (87) and case (i) in the proof
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of Theorem 4.3, we have

T T T
1 1 . . ]
_ @ZQZ Hz#k(a;;gil)2 [T ; fit (gt XZE[K]\{]{Z} glf)] Paikyl [T Z fit (gt XEe[K]\{k} gzﬁ)

t=1

(ahai)’ — 1

1

< Cy('9°N)3 1 Cy(Vrpo) (192 4 Cy (

2
®ii

2
dy, log(d) dy, log(d)
T + T +1] .

Then (29) and (30) can be derived by applying similar arguments in the proof of Theorem 4.3.
O

Proof of Theorem 4.5. The proof of the consistency of 7" draws on methods similar to those in
Ahn and Horenstein (2013) and Han et al. (2022b), given that our CP tensor factor model can be
equated to a vector factor model. Moreover, the consistency of #'P aligns with the proofs in Han et al.
(2022Db), as our CP tensor factor model can also be regarded as a Tucker factor model with a uniform
Tucker rank of (r,...,7). Specifically, lemmas akin to Lemmas 11 and 12 (or Lemmas 14 and 15) in
Han et al. (2022b) can be derived under our assumptions. It leads to P(7, =, 1 <k < K) — 1. We
omit the detailed proofs as they are laborious, albeit straightforward, adaptations for a specialized

case of the Tucker factor model. O

Appendix B Techinical Lemmas

Lemma B.1. Let A e R"*" and B € R2*" with |[ATA—I |l v |BTB—1,|2 <6 and dy A dy > 7.
Let A = U, D1UJ be the SVD of A, U = U,U), B = ViDyV,' the SVD of B, and V. = WV, .
Then, |AANAT —UAUT |y < §||A|2 for all nonnegative-definite matrices A in R™*", and |[AQBT —
UQV |2 <26|Q|2 for all r x r matrices Q.

Lemma B.2. Let M € R"*% pe g matriz with |M|r = 1 and a and b be unit vectors respectively
in RY and R%. Let @ be the top left singular vector of M. Then,

(\|aaT - aaTH%) A (1/2) < |vec(M)vec(M)" — vec(ab Yvec(ab™) " |3. (89)

Lemmas B.1 and B.2 are Propositions 5 and 3 in Han and Zhang (2023), respectively.
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Appendix C More Simulation Results

In this section we show the simulation results of Configuration I, II and III with AR coefficient on
git, ¢, equal to 0.5. We can see that AC-ISO algorithm has a better performance since the signal
strength in the auto-covariance grow with ¢. CC-ISO algorithm, however, outperforms AC-ISO

algorithm even with stronger serial correlation in the factor process.

{dy, d2) = (40,40) (dy1, d3) = (40,60) (d1, d2) = (60,60)

-1.5 - - -

Method
@ CC-Iso
[ AC-IsO
[ tpca

log error

—-35-

T T T T T T T T T
100 300 500 100 300 500 100 300 500

Figure 11: Boxplots of estimation errors over 500 replications under Configuration I with ¢ = 0.5
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(d1, d2) = (40,40) (d1, d2) = (40,60) (d1, d2) = (60,60)

0.9 - - - -

0.7-[ 7] - | -
|7 delta
=3 0.1
0.6 - L - - 103

- 7 /3 05

CC-ISO/AC-ISO error ratio

0.5 - - -

0.4 - - -

T T T T T T T T T
100 300 500 100 300 500 100 300 500
T T T

(dh. d3) = (40.,40) (dh, d2) = (40.60) (dh, d3) = (60.60)

0.35 - - -
0.30 - - -

0.25 - - -

CC-ISO/TPCA error ratio

. | L =
M, i b

0.05 -

T T T T T T
100 300 500 100 300 500 100 300 500
T T T

Figure 12: Boxplots of the estimation error over 500 replications under configuration II with ¢ = 0.5.
Note: The first panel shows the ratio of the estimation error of CC-ISO on AC-ISO. The second
panel shows the ratio of the estimation error of CC-ISO on TPCA.
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(d

.d2) = (40,40) (d1, d2) = (40,60) (dy, d2) = (60,60)

/1 01
—1 03
/3 05

error ratio

0.2- - - -

T T T T T T T T T
100 300 500 100 300 500 100 300 500
T T T

Figure 13: Boxplots of estimation errors over 500 replications under Configuration IIT with ¢ = 0.5

28



	Introduction
	Notations and preliminaries

	Model
	Estimation
	Theory
	Simulation
	Empirical Application
	Characteristic decile portfolios
	Aggregate international trade flow

	Conclusion
	Appendix Proofs of Main Theorem
	Appendix Techinical Lemmas
	Appendix More Simulation Results

