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Abstract
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mits CP-type tensor decomposition, which allows for non-orthogonal loading vectors. Based on
the contemporary covariance matrix, we propose an iterative simultaneous projection estimation
method. Our estimator is robust to weak dependence among factors and weak correlation across
different dimensions in the idiosyncratic shocks. We establish an inferential theory, demonstrat-
ing both consistency and asymptotic normality under relaxed assumptions. Within a unified
framework, we consider two eigenvalue ratio-based estimators for the number of factors in a
tensor factor model and justify their consistency. Through a simulation study and two em-
pirical applications featuring sorted portfolios and international trade flows, we illustrate the
advantages of our proposed estimator over existing methodologies in the literature.
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1 Introduction

Factor models have become one of the most popular tools for summarizing and extracting infor-
mation from high-dimensional data in economics and finance (Fan et al. (2021), Bai and Wang
(2016), Stock and Watson (2016)). Traditional factor models are designed to manage large panel
data, where both cross-sectional and time series dimensions increase. These models admit a low-
rank structure and have a common-idiosyncratic decomposition, allowing for the identification of
significant variations within the panel of economic data.

In modern economics, researchers increasingly encounter vast, multi-dimensional datasets, or
tensor. For example, monthly import-export volume time series spanning various product cate-
gories among countries can be represented as a three-dimensional tensor, with unavailable diagonal
elements for each product category. Similarly, in portfolio selection, data often involve stock prices
and various firm characteristics over time across different firms, forming a two-dimensional tensor.
Additionally, macroeconomic studies on growth and productivity analyze multiple macro variables
at the country-industry level, enabling cross-country comparative analyses, which are challenging
with traditional panel data.

Statistical methods and economic applications for the high-dimensional tensor factor analysis
are still in their early stages of development. As in the classical panel setting, tensor factor models
typically assume low-rank structures, with Canonical Polyadic (CP) and Tucker structures being the
most common choices (see, e.g., Kolda and Bader (2009)). Recent studies have explored various es-
timation approaches and extensions. For example, working with Tucker decomposition, Chen et al.
(2022) considered two estimators based on the autocovariance matrices, while Han et al. (2022a)
extended these methods using an iterative procedure with the matrix unfolding mechanism. Chen
and Fan (2023) proposed an estimation method called α-PCA that preserves the matrix structure
and aggregates mean and contemporary covariance through a hyper-parameter α. Chen and Lam
(2024) introduced a pre-averaging technique for the Tucker tensor factor model that significantly
enhances the model’s inherent signal strength under certain conditions. Chen et al. (2024) intro-
duced a semiparametric tensor factor model leveraging mode-wise covariates. In the context of
CP decomposition, Han et al. (2023) proposed an iterative simultaneous orthogonalization algo-
rithm with warm-start initialization, while Babii et al. (2023) employed tensor principal component
analysis (TPCA), assuming orthogonal factor loadings. Chang et al. (2023) developed estimation
procedure based on a generalized eigenanalysis constructed from the serial dependence structure of
the underlying process.

In this paper, we focus on a tensor factor model with a CP low-rank structure due to its parsi-
monious features. We propose an iterative projection estimation based on contemporary covariance
rather than autocovariance matrices. As highlighted by Chen and Fan (2023), autocovariance-based
methods rely on the assumption of non-zero autocovariances among individual factors, limiting their
effectiveness in scenarios with serially independent factors or weak autocorrelations in tensor data.
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We develop inferential theory, establishing consistency, convergence rates, and limiting distributions
under relaxed assumptions. Additionally, we extend the eigenvalue ratio-based estimator (Ahn and
Horenstein (2013)) for latent dimensions to tensor factor models and show estimation consistency.

The remaining sections of this paper are organized as follows. Section 2 introduces the high-
dimensional tensor factor model with a CP low rank structure allowing for nonorthogonal loading
vectors. In Section 3, we present an iterative projection estimation procedure and two generalized
eigenvalue ratio-based estimators for the number of the latent factors. Section 4 establishes the
consistency and limiting distributions of the estimated loading vectors. We assess the finite sample
performance through simulation in Section 5 and provide two empirical applications in Section 6.
Finally, Section 7 concludes the paper with all mathematical proofs included in the Appendix.

1.1 Notations and preliminaries

In this subsection, we introduce essential notations and basic tensor operations. For an in-depth
review, readers may refer to Kolda and Bader (2009).

Let }x}q “ pxq1 ` ... ` xqpq1{q, q ě 1, for any vector x “ px1, ..., xpqJ. We employ the following
matrix norms: matrix spectral norm }M}2 “ max

}x}2“1,}y}2“1
}xJMy}2 “ σ1pMq, where σ1pMq is the

largest singular value of M . For two sequences of real numbers tanu and tbnu, we write an — bn

if there exists a constant C such that |an| ď C|bn| holds for all sufficiently large n, and an À bn if
there exists a constant C such that an ď Cbn.

Consider two tensors A P Rd1ˆd2ˆ¨¨¨ˆdK ,B P Rr1ˆr2ˆ¨¨¨ˆrN . The tensor product b is defined as
A b B P Rd1ˆ¨¨¨ˆdKˆr1ˆ¨¨¨ˆrN , where

pA b Bqi1,...,iK ,j1,...,jN “ pAqi1,...,iK pBqj1,...,jN .

The k-mode product of A P Rd1ˆd2ˆ¨¨¨ˆdK with a matrix U P Rmkˆdk is an order K tensor of
dimension d1 ˆ ¨ ¨ ¨ ˆ dk´1 ˆmk ˆ dk`1 ˆ ¨ ¨ ¨ ˆ dK , denoted as A ˆk U , where

pA ˆk Uqi1,...,ik´1,j,ik`1,...,iK “

dk
ÿ

ik“1

Ai1,i2,...,iKUj,ik .

The mode-k matricization of a tensor A P Rd1ˆ¨¨¨ˆdK is denoted as matkpAq P Rdkˆd´k , where
d “

śK
j“1 dj and d´k “ d{dk “

śK
j“1,j‰k dj . It is obtained by setting the k-th tensor mode as its

rows and collapsing all the others into its columns. And the vectorization of the matrix/tensor A
is denoted as vecpAq P Rd. Note that matkpvecpAqq “ matkpAq.
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2 Model

We consider a tensor-valued time series Yt P Rd1ˆd2ˆ¨¨¨ˆdK , where 1 ď t ď T . Our focus is on a
tensor factor model with a CP low-rank structure:

Yt “

r
ÿ

i“1

fit pai1 b ai2 ¨ ¨ ¨ b aiKq ` Et, t ď T, (1)

where b denotes the tensor product, fit is a one-dimensional latent factor, aik denotes the dk-
dimensional loading vector, which needs not to be orthogonal. Unlike Han et al. (2023), we permit
arbitrary correlation structures among individual factors. Without loss of generality, we assume
}aik}2 “ 1, for all 1 ď i ď r and 1 ď k ď K. The noise tensor Et is assumed to be uncorrelated
with the latent factors but may exhibit weak correlations across different dimensions. The rank r
may either be fixed or divergent.

When K “ 1, Yt reduces to a vector, and model (1) becomes the classical factor model, exten-
sively studied in the literature (Bai and Ng (2002) and Stock and Watson (2002)). For K ą 1, an
alternative approach is to vectorize data:

vecpYtq “ ΞFt ` vecpEtq, (2)

where vecpYtq P Rd with d “ d1d2 ¨ ¨ ¨ dK and Ft “ pf1t, f2t, ¨ ¨ ¨ , frtq
J

P Rr. However, this method
ignores the tensor structure of the data and hence substantially increases the number of parameters
in the loading matrices from pd1 `d2 ` ¨ ¨ ¨ `dKqr in the tensor case to pd1d2 ¨ ¨ ¨ dKqr in the stacked
vector version. Our proposed approach, modeling vecpYtq as AFt ` vecpEtq, A “ pa1, ¨ ¨ ¨ , arq and
ai “ vecpai1 b ai2 b ¨ ¨ ¨ b aiKq, within our specific framework, yields improved convergence rates
due to its unique structure.

Consider an illustrative example of international trade flows, detailed in Section 6. The observed
Yt forms a square matrix, where d1 “ d2 “ n and K “ 2. Each entry Yt,ij of Yt, with i, j “

1, 2, ¨ ¨ ¨ , n, represents the volume of trade flow from country i to country j at time t. Thus, the ith
row represents data where country i is the exporter, while the jth column represents data where
country j is the importer. Figure 1 shows a time series plot of Yt for G7 countries excluding EU
spanning from January 2008 to December 2014. Model (1) identifies r latent factors, analogous
to r trading hubs. Each country exports to these hubs with certain distributions (determined by
the loading matrix A1) and imports from them likewise (determined by the loading matrix A2).
The element a1,il of A1, where i “ 1, ¨ ¨ ¨ , r and l “ 1, ¨ ¨ ¨ , n, represents the export contribution of
country l to trading hub i. Similarly, the entry a2,jm of A2, where j “ 1, ¨ ¨ ¨ , r and m “ 1, ¨ ¨ ¨ , n,
can be interpreted as the import contribution of country m to trading hub j. We allow the number
of trading hubs r to increase with the increase of n and T .

In the literature, an alternative tensor factor model based on Tucker decomposition has been
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Figure 1: Time series plots of the value of goods traded among G7 countriesU

Notes: (1) sample period: January 2008- December 2014. (2) The plots only show the patterns of the
time series while the magnitudes are not comparable between plots because the ranges of the y-axis are
different.
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explored (see, e.g., Han et al. (2022a), Wang and Lu (2017), Lettau (2023)):

Yt “ Ft ˆ1 A1 ˆ ¨ ¨ ¨ ˆAK ` Et, (3)

where the core tensor Ft P Rr1ˆ¨¨¨ˆrK is the latent factor process in a tensor form, and Ai’s are
di ˆ ri loading matrices. As discussed in Babii et al. (2023) and Han et al. (2023), unlike the CP
decomposition, the Tucker decomposition is generally non-unique, leading to significant identifica-
tion issues. Consequently, estimation results from model (3) may exhibit ambiguity, undermining
meaningful discussions of individual factors (Stock and Watson (2002)). In contrast, the CP tensor
factor model (1) yields a unique set of one-dimensional latent factors, which serve as natural inputs
for diffusion index forecasts and factor-augmented regressions (Bai and Ng (2006)). We regard the
CP tensor factor as a more parsimonious yet flexible and effective alternative. Further comparison
of the performance of these two tensor factor models will be presented in Section 6.

3 Estimation

We consider a two-step estimation procedure to derive the loading vectors and latent factors. This
approach begins with initialization through randomized composite PCA, followed by an iterative
refinement step utilizing an iterative simultaneous orthogonalization procedure.

We start by defining the contemporary covariance as the expected value of the outer product of
Yt:

Σ “ E rYt b Yts

“

r
ÿ

i,j“1

Θij bK
l“1 ail bK

l“1 ajl ` E rEt b Ets ,
(4)

where Θij “ E rfitfjts. Its sample analogue, denoted as pΣ, is computed as the average outer product
over T observations:

pΣ “

T
ÿ

t“1

Yt b Yt

T
. (5)

We aim to estimate the loading vectors by minimizing the empirical quadratic loss, formulated
as:

min
ai1,ai2,...,aiK ,1ďiďr,
}ai1}2“...“}aiK}2“1

›

›

›

›

›

pΣ ´

r
ÿ

i,j“1

Θij bK
l“1 ail bK

l“1 ajl

›

›

›

›

›

2

F

, (6)

where }A}F denotes the Frobenius norm of a tensor A. However, this optimization problem is
non-convex and prone to multiple local optima. To counter this problem, we employ a two-step
approach. The first step focuses on obtaining a suitable initialization close to the global optimum.
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The contemporary covariance Σ in (4) can be unfolded to a dˆ d matrix

Σ0 “ AΘAJ, (7)

where Θ “ EFtF
J
t , Ft “ pf1t, ¨ ¨ ¨ , frtq

J. This unfolding enables classical PCA estimation if the
columns of the loading matrix A are orthogonal. Our framework accommodates general non-
orthogonal ai’s and hence the PCA procedure introduces a bias component, which motivates the
second stage refinement. The accuracy of the PCA estimator hinges on the maximum correlation
among the loading vectors. When the additional orthogonality condition is imposed as in Babii
et al. (2023), the maximum correlation reduces to 0 and hence bias disappears. The first step,
termed intializaiton via randomized composite PCA, is detailed in Algorithm 1.

To further relax the eigengap assumption imposed in Babii et al. (2023) and Han et al. (2023),
we incorporate randomized projection into our composite PCA approach (Procedure 2). Ran-
dom projection, also known as random slicing (Anandkumar et al., 2014b; Sun et al., 2017) is a
well-recognized initialization method in noiseless tensor CP decomposition, which accommodates
repeated eigenvalues. We extend this approach to the tensor CP factor model.

Algorithm 1: Initialization via Randomized Composite PCA
Input : The observations Yt P Rd1ˆ¨¨¨ˆdK , t “ 1, ..., T , the number of factors r, small

constant 0 ă c0 ă 1.
1 Evaluate pΣ in (5), and unfold it to dˆ d matrix rΣ.
2 Obtain pλi, pui, 1 ď i ď r, the top r eigenvalues and eigenvectors of rΣ. Set pλ0 “ 8 and

pλr`1 “ 0.
3 if mint|pλi ´ pλi´1|, |pλi ´ pλi`1|u ą c0pλr then
4 Compute parcpcaik as the top left singular vector of matkppuiq P Rdkˆpd{dkq, for all

1 ď k ď K.
5 else
6 Form disjoint index sets I1, ..., IN from all contiguous indices 1 ď i ď r that do not

satisfy the above criteria of the eigengap.
7 For each Ij , form dˆ d matrix rΣj “

ř

ℓPIj
pλℓpuℓpu

J
ℓ , and formulate it into a tensor

pΣj P Rd1ˆ¨¨¨ˆdKˆd1ˆ¨¨¨ˆdK . Then run Procedure 2 on pΣj to obtain parcpcaik for all
i P Ij , 1 ď k ď K.

Output: Warm initialization parcpcaik , 1 ď i ď r, 1 ď k ď K

Following initialization, we refine the estimation using an iterative simultaneous orthogonaliza-
tion procedure (Algorithm 3). This step aims to enhance estimation accuracy and extract latent
factors. The procedure is motivated by the vector factor structure of the denoised Yt:

Zt,ik “ fitaik ` Vt,ik, (8)
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Procedure 2: Randomized Projection
Input : Noisy tensor Ξ P Rd1ˆ¨¨¨ˆdKˆd1ˆ¨¨¨ˆdK , rank s, number of random projections L,

tuning parameter ν.
1 for ℓ “ 1 to L do
2 Randomly draw a d1 ˆ d1 Gaussian matrix θ whose entries are i.i.d. Np0, 1q.
3 Compute Ξ ˆ1 ˆK`1θ and compute its leading singular value and left singular vector

ηℓ, ruℓ.
4 Compute raℓk as the top left singular vector of matkpruℓq P Rdkˆpd{pdkd1qq, for all

2 ď k ď K.
5 Compute raℓ1 as the top left singular vector of Ξ ˆK

k“2 raℓk ˆ2K
k“K`2 raℓ,k´K .

6 Add the tuple praℓk, 1 ď k ď Kq to SL.

7 for i “ 1 to s do
8 Among the remaining tuples in SL, choose one tuple praℓk, 1 ď k ď Kq that correspond

to the largest }Ξ ˆK
k“1 raℓk ˆ2K

k“K`1 raℓ,k´K}2. Set it to be parcpcaik “ raℓk.
9 Remove all the tuples with max1ďkďK |raJ

ℓ1kparcpcaik | ą ν.
Output: Warm initialization parcpcaik , 1 ď i ď s, 1 ď k ď K

where

Zt,ik “ Yt ˆ1 b
J
i1 ˆ2 ¨ ¨ ¨ ˆk´1 b

J
i,k´1 ˆk`1 b

J
i,k`1 ˆk`2 ¨ ¨ ¨ ˆK bJ

iK , (9)

Vt,ik “ Et ˆ1 b
J
i1 ˆ2 ¨ ¨ ¨ ˆk´1 b

J
i,k´1 ˆk`1 b

J
i,k`1 ˆk`2 ¨ ¨ ¨ ˆK bJ

iK , (10)

Bk “ AkpAJ
kAkq´1 “ pb1k, ..., brkq P Rdkˆr, Ak “ pa1k, . . . , arkq P Rdkˆr, and we have used the

fact that bik is orthogonal to all ajk, j ‰ i by construction. Note that the orthogonalization projec-
tion, which takes place in all except the kth mode simultaneously in each computational iteration,
transforms the tensor Yt to a dk ˆ 1 vector, reducing dimensions and noise substantially. This
transformation enables easy and accurate estimation of the classical vector factor model in equation
(8).

In practice, we don’t observe bik and iterations can be applied to update the estimations. Given
the previous estimates pa

pm´1q

ik , where m is the iteration number, Yt can be denoised via

Zpmq

t,ik “ Yt ˆ1
pb

pmqJ

i1 ˆ2 ¨ ¨ ¨ ˆk´1
pb

pmqJ

i,k´1 ˆk`1
pb

pm´1qJ

i,k`1 ˆk`2 ¨ ¨ ¨ ˆK
pb

pm´1qJ

iK ,

for t “ 1, ..., T , and consequently, updated loading vectors pa
pmq

ik are obtained through eigenanalysis
based on the contemporary covariance pΣpZpmq

1:T,ikq “ 1
T

řT
t“1Z

pmq

t,ik Z
pmqJ

t,ik . The iteration continues
until convergence or the maximum number of iterations is reached.

The above estimation procedure assumes that the rank r is known. However, we need to estimate
r in practice. We consider two estimation procedures based on the eigenvalue ratio method proposed
by Ahn and Horenstein (2013).

For the first procedure, we unfold the sample contemporary covariance pΣ in (5) to a dˆd matrix
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Algorithm 3: Iterative Simultaneous Orthogonalization (ISO)
Input : The observations Yt P Rd1ˆ¨¨¨ˆdK , t “ 1, ..., T , the number of factors r, the

warm-start initial estimates pa
p0q

ik , 1 ď i ď r and 1 ď k ď K, the tolerance
parameter ϵ ą 0, and the maximum number of iterations M .

1 Compute pB
p0q

k “ pA
p0q

k p pA
p0qJ

k
pA

p0q

k q´1 “ ppb
p0q

1k , ...,
pb

p0q

rk q with pA
p0q

k “ ppa
p0q

1k , . . . ,pa
p0q

rk q P Rdkˆr for
k “ 1, . . . ,K. Set m “ 0.

2 repeat
3 Let m “ m` 1.
4 for k “ 1 to K do
5 for i “ 1 to r do
6 Given previous estimates pa

pm´1q

ik , calculate

Zpmq

t,ik “ Yt ˆ1
pb

pmqJ

i1 ˆ2 ¨ ¨ ¨ ˆk´1
pb

pmqJ

i,k´1 ˆk`1
pb

pm´1qJ

i,k`1 ˆk`2 ¨ ¨ ¨ ˆK
pb

pm´1qJ

iK ,

for t “ 1, ..., T . Let pΣ
´

Zpmq

1:T,ik

¯

“ 1
T

řT
t“1Z

pmq

t,ik Z
pmqJ

t,ik .

7 Compute pa
pmq

ik as the top eigenvector of pΣpZpmq

1:T,ikq.

8 Compute pB
pmq

k “ pA
pmq

k p pA
pmqJ

k
pA

pmq

k q´1 “ ppb
pmq

1k , ...,pb
pmq

rk q with pA
pmq

k “ ppa
pmq

1k , . . . ,pa
pmq

rk q.

9 until m “ M or max1ďiďr max1ďkďK }pa
pmq

ik pa
pmqJ

ik ´ pa
pm´1q

ik pa
pm´1qJ

ik }2 ď ϵ;
Output: Estimates

paisoik “ pa
pmq

ik , i “ 1, ..., r, k “ 1, ...,K,

pfit “ Yt ˆK
k“1

pb
pmqJ

ik , i “ 1, ..., r, t “ 1, ..., T,

pYt “

r
ÿ

i“1

pfit bK
k“1 pa

pmq

ik , t “ 1, ..., T.
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rΣ. Let pλ1 ě pλ2 ě ¨ ¨ ¨ ě pλr ě 0 be the ordered eigenvalues of rΣ. The CP tensor factor model (1)
can also be adapted to a vector factor model (2) with the same number of factors r. Thus, the
eigenvalue ratio-based estimator derived from the unfolded covariance matrix rΣ can be defined as

pruer “ argmax
1ďiďrmax

pλi
pλi`1

, (11)

and rmax is a selected upper bound.
Alternatively, we can define the mode-k covariance with the inner product:

pΣk “

T
ÿ

t“1

matkpYtqmatJ
k pYtq

T
P Rdkˆdk .

Let pλ1k ě pλ2k ě ¨ ¨ ¨ ě pλrk ě 0 be the ordered eigenvalues of pΣk. The eigenvalue ratio-based
estimator using the inner product can be defined as

prip “ maxppr1, pr2, . . . , prKq, (12)

where prk “ argmax1ďiďrmax

pλik
pλi`1,k

. We have adopted the setup in the CP tensor factor model (1)
where the number of spiked eigenvalues rk remains constant across different mode-k covariance.
Further details of these two procedures can be found in Algorithms 4 and 5.

Algorithm 4: Unfolded Eigenvalue Ratio Method
Input : The observations Yt P Rd1ˆ¨¨¨ˆdK , t “ 1, ..., T , the upper bound of the number of

factors rmax.
1 Evaluate pΣ in (5), and unfold it to dˆ d matrix rΣ, i.e. rΣ “ matrKsp

pΣq.
2 Obtain pλi, 1 ď i ď rmax ` 1, the top rmax ` 1 eigenvalues of rΣ.
3 Obtain pruer by

pruer “ argmax
1ďiďrmax

pλi
pλi`1

.

Output: Estimate of the number of factors pruer.

It is noteworthy that Han et al. (2023) explore a similar tensor CP factor model as (1), albeit
within a distinct setting where latent factors are assumed uncorrelated and noise follows a white
noise process. Methodologically, their approach rely on the autocovariance between Yt´h and Yt,
where h ě 1, whereas our method employs contemporaneous covariance. The autocovariance-based
method may not be ideal for datasets with low temporal dependence, such as asset return data,
which often exhibit minimal serial correlation possibly due to market efficiency.

Another closely related approach is tensor PCA proposed in Babii et al. (2023). They consider a
CP tensor factor model with orthogonal loading vectors. Unlike Tucker factor models, the identifica-
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Algorithm 5: Eigenvalue Ratio Method through Inner Product
Input : The observations Yt P Rd1ˆ¨¨¨ˆdK , t “ 1, ..., T , the upper bound of the number of

factors rmax.
1 for k “ 1 to K do
2 Evaluate

pΣk “

T
ÿ

t“1

matkpYtqmatJ
k pYtq

T
P Rdkˆdk .

3 Obtain pλik, 1 ď i ď rmax ` 1, the top rmax ` 1 eigenvalues of pΣk.
4 Obtain prk by

prk “ argmax
1ďiďrmax

pλik
pλi`1,k

.

5 Calculate prip by

prip “ maxppr1, pr2, . . . , prKq.

Output: Estimate of the number of factors prip.

tion of CP factor models does not necessarily require orthogonality. Applying tensor PCA to models
with non-orthogonal loadings introduces a bias component of higher order than our first-stage ran-
domized composite PCA. Even when the loadings are orthogonal, our contemporary variance-based
iterative estimation exhibits a faster convergence rate than tensor PCA due to dimension and noise
reduction. A comparison of our estimator with the autocovariance-based estimator and tensor PCA
through simulation will be presented in Section 5.

4 Theory

In this section, we delve into the statistical attributes of the algorithms introduced previously. Our
theoretical framework offers guarantees for consistency and outlines the statistical error rates for
estimating the factor loading vectors aik, where 1 ď i ď r, 1 ď k ď K, given certain regularity
conditions. Considering that the loading vector aik can only be identified with a change in sign, we
employ

}paikpaJ
ik ´ aika

J
ik}2 “

b

1 ´ ppaJ
ikaikq2 “ sup

zKaik

|zJ
paik|

to quantify the discrepancy between paik and aik.
To present theoretical properties of the proposed procedures, we impose the following assump-

tions.
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Assumption 4.1. Let ξt “ pξ1t, ξ2t, . . . , ξptq be independent p-dimensional random vector with each
entry ξi independent and satisfying Epξitq “ 0, Epξ2itq “ 1 and for 0 ă ϑ ď 2

max
i

P p|ξit| ě xq ď c1 exp
´

´c2x
ϑ

¯

. (13)

Let vecpEtq “ Hξt, where H is a deterministic matrix and p ě d. The eigenvalues of the covariance
matrix of vecpEtq satisfies C´1

0 ď λdpΣeq ď ¨ ¨ ¨ ď λ1pΣeq ď C0 where Σe “ EvecpEtqvecpEtqJ and C0

is a constant.

Assumption 4.2. Recall Ft “ pf1t, ..., frtq
J, Θ “ EpFtF

J
t q and λi “ λipΘq for 1 ď i ď r. Assume

λ1 ě λ2 ě ¨ ¨ ¨ ě λr ą 0. For any v P Rr with }v}2 “ 1,

max
t

P
´ˇ

ˇ

ˇ
vJΘ´1{2Ft

ˇ

ˇ

ˇ
ě x

¯

ď c1 exp p´c2x
γ1q , (14)

where c1, c2 are some positive constants and 0 ă γ1 ď 2.

Assumption 4.3. Assume the factor process fit, 1 ď i ď r, is stationary and strong α-mixing in t.
The mixing coefficient satisfies

αpmq ď exp p´c0m
γ2q (15)

for some constant c0 ą 0 and γ2 ě 0, where

αpmq “ sup
t

!
ˇ

ˇ

ˇ
PpAXBq ´ PpAqPpBq

ˇ

ˇ

ˇ
: A P σpfis, 1 ď i ď r, s ď tq, B P σpfis, 1 ď i ď r, s ě t`mq

)

.

Assumption 4.1 aligns closely with the noise conditions presented in seminal works such as Bai
and Ng (2002), Bai (2003), Lam et al. (2011), Lam and Yao (2012), and others within the factor
model literature. For simplicity, we assume that the noise tensor remains independent across time
t, allowing for weak cross-sectional dependence. While incorporating weak temporal correlation
among the noise, as suggested by Bai and Ng (2002), is plausible, it substantially complicates
our theoretical analysis. Therefore, we defer this exploration to future research. Nonetheless,
our simulation studies demonstrate the robust performance of the proposed methods even under
conditions of weak temporal dependence.

Assumption 4.2 ensures the unique identification of all factor loading vectors aik up to sign
changes. Unlike the eigen decomposition of a matrix, if some λi are equal, the estimation of the
loading vectors aik isn’t subject to rotational ambiguity but only to the signed permutation of
loading vectors. Furthermore, Assumption 4.2 specifies that the tail probability of fit must exhibit
exponential decay. Specifically, when γ1 “ 2, it implies that fit follows a sub-Gaussian distribution.

Assumption 4.3 is a widely recognized standard condition that accommodates a broad range of
time series models, including causal ARMA processes with continuously distributed innovations, as
further detailed in works such as Tong (1990); Bradley (2005); Tsay (2005); Fan and Yao (2003);
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Rosenblatt (2012); Tsay and Chen (2018), among others.
While Assumptions 4.1 and 4.2 currently assume exponential tails for both noise and factor

processes, these conditions can be extended to accommodate polynomial-type tails (under bounded
moment conditions) when the number of factors r is fixed, albeit at the cost of a more complex
theoretical analysis.

Recall Ak defined in equation (10) with aik as its columns, and AJ
kAk “ pσij,kqrˆr. As σii,k “

}aik}22 “ 1, the correlation among columns of Ak can be measured by

δk “ }AJ
kAk ´ Ir}2. (16)

Similarly we use

δ “ }AJA´ Ir}2 (17)

to measure the correlation of the matrix A “ pa1, . . . , arq P Rdˆr with ai “ vecpbK
k“1aikq and

d “
śK

k“1 dk. Let δmax “ maxtδ1, ¨ ¨ ¨ δKu.
Theorem 4.1 below presents the performance bounds, which depends on the coherence (the

degree of non-orthogonality) of the factor loading vectors.

Theorem 4.1. Suppose Assumptions 4.1, 4.2, 4.3 hold. Let 1{γ “ 2{γ1 ` 1{γ2, and δ ă 1 with δ
defined in (17). Assume T ď C exp

`

dϑ{p2ϑ`4q
˘

and T ď C exp
`

pd{rqγ1{2
˘

.
(i). The eigengaps satisfy mintλi ´ λi`1, λi ´ λi´1u ď cλr for all 1 ď i ď r, with λ0 “ 8, λr`1 “ 0,
and c is sufficiently small constant. With probability at least 1 ´ T´C1 ´ d´C1, the following error
bound holds for the estimation of the loading vectors aik using Algorithm 1,

}parcpcaik parcpcaJ

ik ´ aika
J
ik}2 ď

ˆ

1 `
2λ1
λr

˙

δ `
C2ϕ

p0q

λr
, (18)

for all 1 ď i ď r, 1 ď k ď K, where C1, C2 are some positive constants, and

ϕp0q “ λ1

˜

c

r ` log T

T
`

pr ` log T q1{γ

T

¸

`

c

λ1d log d

T
`

?
λ1pd log dq

T
` 1. (19)

(ii). The eigengaps condition in (i) is not satisfied. Assume λ1 — λr and the number of random
projections L ě Cd2 _ Cdr2pλ1{λrq2. With probability at least 1 ´ T´C1 ´ d´C1 , the following error
bound holds for the estimation of the loading vectors aik using Algorithm 1,

}parcpcaik parcpcaJ

ik ´ aika
J
ik}2 ď C3

a

δmax ` C3

d

ϕp0q

λr
. (20)

The first term of the upper limit in (18) and (20) arises due to the loading vectors aik not being
orthogonal, which may be seen as bias. Meanwhile, the subsequent term in (18) is derived from
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a concentration bound concerning random noise, thereby being describable as a form of stochastic
error. The condition T ď C exp

`

dϑ{p2ϑ`4q
˘

and T ď C exp
`

pd{rqγ1{2
˘

is imposed primarily for
convenience. Eliminating this condition would result in a more complex convergence rate.

When the eigengap condition is not met, we employ randomized projection to determine the
statistical convergence rate as shown in (20), which is slower than the rate in (18). A broader result
than (20), permitting a more general eigen ratio λ1{λr for part (ii), is detailed in the appendix.
In practice, since the sample covariance tensor includes both the average of signal-by-noise cross-
products and the average of noise-by-noise cross-products, it is uncommon to encounter nearly
identical sample spiked eigenvalues. Our simulation study demonstrates that while the original
composite PCA provides viable initializations when λ1 “ λr, its performance is not as good as that
of randomized composite PCA using Procedure 2.

Remark 4.1. With minor modifications to the proof of Theorem 4.1(i), we are able to show

}parcpcaik parcpcaJ

ik ´ aika
J
ik}2 “ OP

˜

pλ1{λrqδ `
λ1
λr

˜

c

r

T
`
r1{γ

T

¸

`

?
λ1d

λr
?
T

`
1

λr

¸

. (21)

In the typical strong factor models where λ1 — λr — d and r fixed, the rate becomes OPpδ`
a

1{T `

1{dq, aligning with the convergence rate for the vector factor model when δ “ 0.

Let the statistical error bound of the initialization used in Algorithm 3 be ψ0 (for example, the
right hand side of (18)), and also let

ψideal “ max
1ďkďK

˜

1

λr

c

dk log d

T
`

c

dk log d

λrT
`

1

λr

¸

. (22)

Theorem 4.2. Suppose Assumptions 4.1, 4.2, 4.3 hold. Assume that δmax “ maxkďK δk ă 1 with
δk defined in (16), and r “ OpT q. Let 1{γ “ 2{γ1 ` 1{γ2, d “ d1 ¨ ¨ ¨ dK , and dmin “ minkďK dk.
Assume T ď C exp

´

d
ϑ{p2ϑ`4q

min

¯

and T ď C exp
`

pdmin{rqγ1{2
˘

. Suppose that for a proper numeric
constant C1,K depending on K only, we have

C1,k

?
rψ0 ` C1,K

ˆ

λ1
λr

˙

ψ2K´3
0 ` C1,K

c

λ1
λr

˜

c

r ` log T

T
`

pr ` log T q1{γ

T

¸

ψK´2
0 ď ρ ă 1. (23)

Then, after at most M “ Oplogpψ0{ψidealqq iterations of Algorithm 3, with probability at least
1 ´ T´C ´ d´C , the final estimator satisfies

}paisoik paisoJ
ik ´ aika

J
ik}2 ď C0,Kψ

ideal, (24)

for all 1 ď i ď r, 1 ď k ď K, where C0,K is a constant depending on K only and C is a positive
numeric constant.
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Again, we assume T ď C exp
´

d
ϑ{p2ϑ`4q

min

¯

and T ď C exp
`

pdmin{rqγ1{2
˘

primarily for simplifying
the convergence rate. It is important to note that the error bound ψ0 for initialization is intended
for each individual loading vector aik. When applying Algorithm 3, which requires the inverse of
pAJ
k

pAk, the condition
?
rψ0 À 1 ensures a reliable initial estimate of the loading matrix pAk. Although

the other components in (23) may seem complex, they are designed to ensure the error contraction
effect in each iteration. This ensures that as iterations progress, the error bound will approach the
desired statistical upper bound.

Remark 4.2. With slightly modifications to the proof of Theorem 4.2, we can show

}paisoik paisoJ
ik ´ aika

J
ik}2 “ OP

˜

c

dmax

λrT
`

1

λr

¸

. (25)

In the typical strong factor models where λ1 — λr — d, the rate simplifies to OPp
a

dmax{pdT q `1{dq.
This rate is significantly faster than that found in the vector factor model.

We now demonstrate the feasibility of obtaining a more precise bound by closely examining the
leading order term. This process allows us to ascertain the asymptotic behavior of the estimator
aik. Specifically, we will establish that

paisoik ´ signpaJ
ikpaisoik qaik “ Paik,K

«

1

ΘiiT

T
ÿ

t“1

fit
`

Et ˆℓPrKszk b
J
iℓ

˘

ff

`OP

˜

1

Θii

˜

dk
T

`

c

dk
T

` 1

¸¸

,

where Paik,K “ Idk ´ aika
J
ik and Θ “ pΘijqrˆr, where Θ is defined in Assumption 4.2. This enables

the determination of asymptotic distributions for linear forms of aik.
The following theorem shows the asymptotic distribution of a linear form of the factor loading

vector uJaik for some fixed vector u. Note that in the strong factor model, we have Θii — d for all
1 ď i ď r.

Theorem 4.3. Suppose the conditions in Theorem 4.2 are satisfied. Let λ1 — λr. Assume that
lim infdkÑ8 }Paik,Ku}2 ą 0, for each 1 ď i ď r, 1 ď k ď K, we have:

(i) If T {pdkΘiiq Ñ 0, then

?
TuJ

`

paisoik ´ signppaisoJ
ik aikq ¨ aik

˘ d
ÝÑ Np0, σ2u,ikq, (26)

where σ2u,ik “ hJ
ikΣehik{Θii, hik “ biK d ¨ ¨ ¨ d bi,k`1 d Paik,Kud bi,k´1 d ¨ ¨ ¨ d bi1 P Rd and d

represents Kronecker product.

(ii) If dkΘii “ OpT q, then

Θiiu
J

`

paisoik ´ signppaisoJ
ik aikq ¨ aik

˘

“ OPp1q. (27)
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In Theorem 4.3, we focus on vectors u with the property that }Paik,Ku}2 ą 0 when dk is
large, effectively presupposing that sin=pu, aikq ą 0. Conversely, when sin=pu, aikq “ 0, the
convergence rate of the estimated linear form is faster, and its asymptotic distribution is a blend of
χ2
1 distributions.

Theorem 4.4. Suppose the conditions in Theorem 4.2 are satisfied. Let λ1 — λr. For each 1 ď i ď

r, 1 ď k ď K, we have:

(i) With probability at least 1 ´ T´C ´ d´C ,

1 ´ ppaisoJ
ik aikq2 ď C0,Kpψidealq2, (28)

where ψideal is defined in (22).

(ii) If T {pdkΘiiq Ñ 0, then

T
`

1 ´ ppaisoJ
ik aikq2

˘ d
ÝÑ

dk
ÿ

j“1

ϖjχ
2
1, (29)

where ϖj , 1 ď j ď dk are the eigenvalues of Σ
1{2
ik Paik,KΣ

1{2
ik , with Σik “ Θ´1

ii ErpEt ˆK
ℓ‰k

biℓqpEt ˆK
ℓ‰k biℓq

Js.

(iii) If dkΘii “ OpT q, then
Θ2

ii

`

1 ´ ppaisoJ
ik aikq2

˘

“ OPp1q. (30)

Drawing parallels with traditional PCA is insightful; in PCA, a debiasing process is often nec-
essary to achieve asymptotic normality in linear combinations of the principal components, as
discussed in Koltchinskii and Lounici (2016, 2017); Koltchinskii et al. (2020). For the CP tensor
factor model, however, merely meeting the signal strength requirement T {pdkΘiiq Ñ 0 is enough
to render the bias inconsequential. This observation aligns with findings by Bai (2003) regarding
vector factor models.

The estimators are constructed with a specified rank r, although in the theoretical analysis, r
is allowed to increase. Practically, pr can be estimated using the generalized eigenvalue ratio-based
estimators detailed in Algorithms 4 or 5. The asymptotic validity of pruer and prip are established in
Theorem 4.5 below.

Theorem 4.5. Suppose Assumptions 4.1, 4.2, 4.3 hold and rmax is a predetermined constant no
smaller than r. Assume r “ OpT q and λ´1{2

r d1{2T´1{2 ` λ´1
r “ op1q. Then

Pppruer “ rq Ñ 1,

Ppprip “ rq Ñ 1,

as dk Ñ 8 and T Ñ 8.
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Theorem 4.5 derives the consistency of rank estimators pruer and prip based on the eigenvalue
ratios. This can be viewed as a generalization of Theorem 1 of Ahn and Horenstein (2013) from
vector factor models to CP tensor factor models.

5 Simulation

In this section, we conduct empirical comparisons among different methods for estimating loading
vectors across various simulation scenarios, and verify the limiting distribution of the estimated
loading vectors. We assess the performance of the contemporary covariance-based iterative simulta-
neous orthogonalization procedure (CC-ISO) proposed in this paper, auto-covariance-based iterative
simultaneous orthogonalization procedure by Han et al. (2023) (AC-ISO), and tensor principle com-
ponent analysis (TPCA) by Babii et al. (2023). The auto-covariance considered by Han et al. (2023)
is defined by the following lagged-cross product operator:

Σh “ E
„

Yt´h b Yt

T ´ h

ȷ

P Rd1ˆ¨¨¨dKˆd1ˆ¨¨¨ˆdK .

In this section, we fix h “ 1. The estimation error measures the angle between the estimated loading
vector and the true loading vector, computed as:

max
i,k

}paikpaJ
ik ´ aika

J
ik}2.

Throughout our analysis, the observations Yt’s are simulated according to model (1) with K “ 2.
The true loading vectors are generated as follows: The elements of matrices rAk “ pra1k, . . . ,rarkq P

Rdkˆr, 1 ď k ď K, are drawn from i.i.d. Np0, 1q distributions and then orthonormalized via QR
decomposition. If δ “ 0, set Ak “ rAk; otherwise, set a1k “ ra1k and aik “ pra1k ` θraikq { }ra1k ` θraik}2

for all i ě 2 and 1 ď k ď K, with ϑ “ δ{pr ´ 1q and θ “
`

ϑ´2{K ´ 1
˘1{2. In our simulation study,

we vary the correlations between loading vectors through δ. It is evident that an increase in δ leads
to a higher degree of linear dependence among the loading vectors.

The factor processes fit exhibit weak temporal dependence and are generated as an independent
AR(1) process multiplied by a scalar depending on d1, d2 and r:

fit “ wigit, (31)

where

• gi,t`1 “ ϕgit ` ϵit with ϕ “ 0.1, Varpϵq “ 1 ´ ϕ2 “ 0.991;

• wi “ 1
5 ˆ pr ´ i` 1q

?
d1 ˆ d2.

1The results with ϕ “ 0.5 are reported in the appendix.
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In this case, the tensor factor model in (1) represents a typical strong factor model, where λi “

w2
i “ pr´ i` 1q2d1d2{25 “ Opdq when r is fixed. In Appendix C, we provide the result for ϕ “ 0.5.

The following three configurations are adapted from Babii et al. (2023) and Han et al. (2023)
with modifications made for comparative analysis of the empirical performances among TPCA, AC-
ISO and CC-ISO. In these configurations, pd1, d2q P tp40, 40q, p40, 60q, p60, 60qu, T P t100, 300, 500u

and r “ 3.

I. (Orthogonal loading matrix) Set δ “ 0 so that the columns of loading matrix Ak are orthonor-
mal. Each entry of error term Et is generated independently from Np0, 1q.

II. (Non-orthogonal loading matrix) Vary δ in the set t0.1, 0.3, 0.5u so that the columns of loading
matrix Ak are not orthogonal. Each entry of error term Et is generated independently from
Np0, 1q.

III. (Serial correlation in Et) Set δ “ 0.2. The errors Et are generated according to Et “ Ψ
1{2
1 ZtΨ

1{2
2 ,

where

– Ψ1 “ Ψ2 “ tσe,iju with σe,ij “ 0.5|i´j|;

– vecpZtq “ ΦvecpZt´1q `Ut where Ut „ i.i.d. Np0, Id1d2q and Φ P Rd1d2ˆd1d2 is a diagonal
matrix with all diagonal elements equal to ρ.

We vary ρ in the set t0.1, 0.3, 0.5u to investigate the robustness of our algorithm under weak
cross-sectional correlation and serial correlation in the error term.

The following configuration aims to assess the robustness of our proposed algorithm under weak
factor structures.

IV. (Weak factors) Set r “ 3, and δ “ 0.2. The error terms are generated according to Et “

Ψ
1{2
1 ZtΨ

1{2
2 , where

– Ψ1 “ Ψ2 “ tσe,iju with σe,ij “ 0.5|i´j|;

– Zijt „ i.i.d. Np0, 1q.

The scaling multiplier in factor process wi “ pr´ i` 1q ˆ pd1d2q1{α, where α varies in the set
t2.5, 3, 3.5, 4u. Note that when α “ 2, the factor structure is considered strong. A larger α
indicates a weaker factor structure.

For each configuration, we conduct the experiment 500 times and present the box plots of the
results. Figure 2 shows the estimation errors for CC-ISO, AC-ISO and TPCA under configuration
I. Notably, CC-ISO consistently outperforms the other two algorithms across various dimensions.
The estimation by AC-ISO deviates significantly from the true value due to the weak signal in the
auto-covariance matrix resulting from the weak temporal dependence in the factor process.
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Figure 2: Boxplots of the estimation error over 500 replications under configuration I

Figure 3: Boxplots of the estimation error over 500 replications under configuration II. Note: The
first panel shows the ratio of the estimation error of CC-ISO on AC-ISO. The second panel shows
the ratio of the estimation error of CC-ISO on TPCA.
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In Configuration II, we assess the impact of non-orthogonal factor loadings on estimations using
ISO algorithms and TPCA algorithm. Figure 3 shows the ratio of the estimation errors of CC-ISO to
AC-ISO (first panel) and to TPCA (second panel) across different values of δ and dimensions. The
error ratio of CC-ISO to AC-ISO remains around 0.15, indicating the superior accuracy of CC-ISO.
The ratio remains relatively stable because the signal part in AC-ISO, albeit small, also increases
with dimensions, resulting in limited improvements on the estimation. However, in the second
panel, the error ratio of CC-ISO to TPCA converges as dimensions increase. This is because TPCA
cannot identify non-orthogonal factor loading vectors, leading to stable estimation errors across
varying dimensions. In contrast, CC-ISO successfully identifies non-orthogonal loading vectors,
resulting in estimation errors converging to 0.

Figure 4: Boxplots of the estimation error over 500 replications under configuration III

Figure 4 shows the ratio of estimation errors of CC-ISO to AC-ISO under configuration III,
designed to evaluate the robustness of proposed CC-ISO algorithm against serial correlation in the
error term. We observe that CC-ISO’s performance improves monotonically as T increases. In
contrast, AC-ISO’s performance deteriorates as the serial correlations in the error term strengthens.
This decline is due to the contamination of signals in the auto-covariance by the serial correlations
in the error terms. However, CC-ISO demonstrates robustness against such serial correlations.

Figure 5: Boxplots of the estimation error over 500 replications under configuration IV
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In Figure 5, we show the box plots of the logarithm of the estimation errors of CC-ISO algorithm
under a weak factor configuration. It is evident that the estimation errors decrease as T increases.
Additionally, the rate of decrease in estimation errors depends on the value of α: a higher α leads to
a faster decrease. These results validate the robustness of the CC-ISO algorithm against a certain
degree of weak factor structure, in line with the conclusions drawn in Theorem 4.2.

We also examine the performance of Randomized Projection (RP) from Procedure 2 and compare
it with Composite PCA (C-PCA), which corresponds to Algorithm 1 but without the steps for
detecting close eigenvalues (Step 3, 5, 6, and 7 in Algorithm 1).

V. (C-PCA vs. RP-PCA) r “ 5. d1 “ d2 “ d̄ with d̄ P t20, 40, 80u and T P t100, 200, 500u. The
columns of factor loadings Ak are orthonormal and are generated as described in Configuration
I. Furthermore, the factors fit are also orthonormal, generated using QR decomposition after
deriving from AR(1) processes. In this setting, the singular values of the common components
řr

i“1wigitai1 b ai2 are solely determined by wi. We set wi “ w “ 10 to ensure identical
eigenvalues of common components. Error terms are generated from i.i.d. Np0, 1q. Though
the top r eigenvalues of the rΣ are not identical due to noise, their differences are relatively
small, allowing randomized projection algorithms to ensure the accuracy of initial estimations.
For the remaining parameters, we set ν “ 0.8, c0 “ 0.1 and L “ 2r2.

Figure 6: Boxplots of the estimation error over 500 replications under configuration V

Given the close empirical performances of CC-ISO under both initialization methods under con-
figuration V, our focus shifts to the estimation errors of the initial estimations, as illustrated in
Figure 6. RP algorithm outperforms the RC-PCA algorithm in terms of the accuracy of initial esti-
mations, particularly pronounced when d is smaller and T is larger. This occurs because the sample
covariance of VecpEtq approaches the identity matrix as d decreases and T increases. Consequently,
rΣ is more likely to have eigenvalues that are closer together.
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Figure 7: Boxplots of the estimation error over 500 replications under configuration VI

The subsequent simulation verifies the robustness of the CC-ISO algorithm against weak mis-
specification of the model. The data is generated following the tucker factor model with K “ 2:

Yt “ A1FtA
J
2 ` Et,

where Ft P Rrˆr is the factor process in the Tucker factor model. In the CP factor model, Ft is
diagonal with the ith diagonal element equal to fit. In the mis-specification setting, we allow the
off-diagonal entries to deviate from 0. Denote the pi, jqth entry of Ft by fijt. Let fijt “ wijtgijt,
where gijt is generated as specified in (31). The configuration is as follows:

VI. (Mis-specification) r “ 3, pd1, d2q P tp40, 40q, p40, 60q, p60, 60qu and T P t100, 300, 500u. The
loading vectors and error terms are generated as in Configuration IV, allowing for correlation
between loading vectors and weak cross-sectional correlation in the error term. wijt “

?
d1d2{5

if i “ j and wijt “ pd1d2q1{α{5 with α P t3, 4, 5u. A smaller α indicates a more severe mis-
specification in the model.

Figure 7 shows the results under configuration VI. Given α, the estimation error decreases in T
or in d, which illustrates the robustness of CC-ISO against weak mis-specification.

Next simulation is conducted to verify the results in Theorem 4.3(i). The configuration is as
follows:

VII. (CLT) r “ 3. d1 “ d2 “ d̄ P t20, 60, 100u. For each d̄, we set T “ 200 and wi “ pr´i`1q
?
d1d2.

For factor loading vectors, we let δ “ 0.2 to allow for non-orthogonal loading vectors. The
error Ei,j,t are generated as in Configuration IV to allow for weak cross-sectional correlations.
We simulate the distribution of aik in (26) with i “ 1, k “ 1 under three choices of u:
u1 “ 1{

?
d̄, u2 “ r1, 0, 0, . . . , 0sJ and u3 “ r0, 1, 0, 0, . . . , 0sJ.
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Figure 8: QQ plots and histograms of
?
TuJ

`

paisoik ´ signppaisoJ
ik aikq ¨ aik

˘

{σu,ik under Configuration VII.
Note: 1. The row displays the results for ui. The column shows the results for different dimension d̄. 2. The
red curve plots the distribution of standard normal distribution.
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Figure 8 shows the QQ plots and histograms of
?
TuJ

`

paisoik ´ signppaisoJ
ik aikq ¨ aik

˘

{σu,ik derived
from Theorem 4.3 under Configuration VII. It is observed that the normalized empirical distribution
closely approximates the standard normal distribution.

Finally, we evaluate the performance of two proposed rank estimation algorithms: the unfolded
eigenvalue ratio method and the eigenvalue ratio method via inner product, over the following DGP
configuration:

VIII (Rank Estimation) r “ 3. d1 “ d2 “ d̄ P t20, 40, 60, 80u and T P t100, 300, 500u. Set
δ “ 0.2 to allow for correlation among factor loading vectors. Error terms are generated as in
Configuration IV to accomodate weak cross-sectional correlation. The factors are generated
according to (31) with wi “ pr ´ i` 1qd̄ and ϕ P t0.1, 0.5u.

The results are presented in Table 1. The numbers in the table denote the relative frequency of
correct rank estimation over 500 replications. Both methods perform very well with accuracy levels
close to 1.

Table 1: Rank estimation

ρ 0.1 0.5

pd1, d2q T pruer prip pruer prip

(20,20) 100 1 0.98 1 0.95
300 1 1 1 1
500 1 1 1 1

(40,40) 100 1 1 1 1
300 1 1 1 1
500 1 1 1 1

(60,60) 100 1 1 1 1
300 1 1 1 1
500 1 1 1 1

(80,80) 100 1 1 1 1
300 1 1 1 1
500 1 1 1 1

Note: Relative frequency of correct rank estimation over 500 replications.

6 Empirical Application

6.1 Characteristic decile portfolios

In this section, in line with Babii et al. (2023), we conduct empirical analysis on the dataset col-
lected by Chen and Zimmermann (2022), consisting of over 200 characteristic-sorted portfolios from
previous studies of stock market anomalies. We utilize the August 2023 release of the database,
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focusing on monthly portfolio returns sorted into 10 deciles based on firm-level characteristics span-
ning from January 1990 to December 2022. As we only consider a balanced panel of portfolios, the
number of characteristics throughout the entire sample period is 127. Therefore, the dimension of
the tensor-valued time series Yt we considered is 127 ˆ 10 with sample size T “ 396. Additionally,
we obtain the risk-free rate from the Kenneth French data library to compute the excess return of
each portfolio.

We rewrite model (1) as:

Yt,jl “

r
ÿ

i“1

fitai1,jai2,l ` Et,jl, (32)

where Yt,jl is the excess return of the lth-decile of the jth characteristic at time t “ 1, . . . , T ; fit are
the systematic risk factors; factor loading ai1,j determines the heterogeneous exposure of the jth

characteristics to the ith risk factor; loading ai2,l determines the exposure of the lth decile to the
ith risk factor. In this model, all loading vectors are normalized to 1, with fit absorbing all scales
of loadings. We use the generalized ratio-based method as well as the screen plot to select 3 as the
number of factors.

We estimate the factor model in equation (32) employing various algorithms: TPCA, CC-ISO,
AC-ISO with h “ 1, generalized eigen-analysis based estimation (GE) proposed by Chang et al.
(2023) with K “ 1, and the AC iterative projection based on tucker decomposition (Tucker-AC-IP)
by Han et al. (2022a) with h “ 1 and rank p3, 3q. We compare the estimates as well as the R-squared
obtained from these different algorithms.

Table 2 reports the summary statistics of the estimated loadings pai1, which determine the ex-
posure of characteristics to the three latent factors. The statistics for TPCA closely align with
the empirical results documented in Babii et al. (2023). Across all algorithms, the loadings on the
first factor are consistently positive with relatively small standard deviations. However, while pa2,1

and pa3,1 demonstrate approximate symmetry around zero in TPCA, with approximately half of the
loadings being positive, they exhibit significant skewness in the ISO algorithms, with their means
deviating from zero. In the case of the GE algorithm, pa2,1 displays high skewness whereas pa3,1 shows
an approximate symmetry. Specifically, around half of the loadings are positive, and the maximum
and minimum values of pa3,1,i are approximately symmetric about zero. Similarly, Tucker-AC-IP
algorithm also exhibits approximate symmetric patterns in the second factor loading vector.

Table 3 displays the R2 of the estimation of Model (32) across five algorithms. In this section,
R2 is defined as:

R2 “ 1 ´
}Y ´ pY}2F

} rY}2F

,

where rY is the demeaned tensor of Y with the tth entry defined as rYt “ Yt ´ 1
T

řT
t“1 Yt.

Among the four algorithms for the CP factor model, it is observed that the CC-ISO algorithms
achieve the best fit to the model, exhibiting the highest R-squared values. Comparatively, within
the ISO algorithms, CC-ISO outperforms AC-ISO, yielding higher R-squared values. However, the
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Table 2: Summary statistics of estimated loadings pai1 specific to characteristics

Max Mean Min Std >0

CC-ISO
pa1,1 0.065 0.088 0.107 0.009 1
pa2,1 0.087 -0.068 -0.212 0.058 0.134
pa3,1 0.049 -0.073 -0.188 0.050 0.063

AC-ISO
pa1,1 0.038 0.087 0.126 0.019 1
pa2,1 0.063 -0.070 -0.208 0.055 0.087
pa3,1 0.148 -0.044 -0.230 0.078 0.276

TPCA
pa1,1 0.108 0.088 0.064 0.009 1
pa2,1 0.275 0.003 -0.230 0.089 0.559
pa3,1 0.186 0.006 -0.348 0.089 0.496

GE
pa1,1 0.181 0.08 0.001 0.033 1
pa2,1 0.245 0.059 -0.087 0.067 0.803
pa3,1 0.301 0.006 -0.291 0.089 0.520

Tucker-AC-IP
pa1,1 0.14 0.09 0.066 0.01 1
pa2,1 0.286 0 -0.295 0.089 0.409
pa3,1 0.263 -0.002 -0.187 0.089 0.457

Note: ą 0 denotes the ratio of positive entries in each loading vector.

Table 3: R-squared across different algorithms

Method CC-ISO AC-ISO TPCA GE Tucker-AC-IP

R2 0.853 0.844 0.759 0.776 0.878
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Figure 9: R-squared of the rolling-sample study on characteristic decile portfolio returns across five algo-
rithms. Note: The first panel shows the results of CC-ISO, TPCA and Tucker-AC-IP. The second panel
shows the results of AC-ISO and GE.

TPCA algorithm displays the lowest R-squared value at 0.759.
Given that Tucker decomposition entails a larger number of factors compared to CP decom-

position, it is not surprising that Tucker-AC-IP yields higher R2 than all algorithms based on CP
decomposition. Nonetheless, the degree of improvement is modest, with R2 increasing by only 2 to
4 percent when adopting the Tucker factor model. This observation suggests that the characteristic
decile portfolio data might possess a CP-like factor structure.

We also conduct a rolling-sample study on portfolio excess returns, where each rolling sample
spans 120 months, resulting in a total of T ´ 120 “ 276 rolling samples with the first rolling sample
from January 1990 to December 2000. Within each rolling sample, we estimate the CP factor
model in equation (32) using four algorithms and compute the sample R2. For comparison, we also
calculate the sample R2 under tucker tensor factor model using Tucker-AC-IP algorithm .

Figure 9 illustrates the results of the rolling R2. The first panel shows the results of the algo-
rithms for the CP factor model based on contemporary covariance matrix, alongside the Tucker-
AC-IP algorithm for the Tucker factor model. Meanwhile, the second panel presents the results of
algorithms for CP factor model based on auto-covariance matrix.
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The three curves in the first panel exhibits a similar pattern: fluctuations with an overall increas-
ing trend between 1990 and 2000, followed by a sharp rise between 2000 and 2003. Subsequently,
they revert to fluctuation after 2003. However, the rolling R2 of CC-ISO consistently outperforms
that of TPCA across all rolling samples. Interestingly, while the Tucker factor model demonstrates
the best fit in the full sample, it does not outperform CC-ISO in the rolling sample study, particularly
in the rolling samples prior to 2000 and after 2008.

In the second panel, both AC-ISO and GE algorithms show significant fluctuations in R2 starting
after 2010, which coincides with the COVID pandemic period. Tucker-AC-IP, which also relies on
auto covariance matrix estimation, exhibit milder fluctuations during this period. Before 2008,
AC-ISO’s R2 follows a smoother pattern compared to the GE algorithm.

6.2 Aggregate international trade flow

Understanding the pattern and evolution of international trade flow is essential for a broad range
of economic activities including policy-making, economic forecast, and firm-level optimization. In
this study, we apply the CP tensor factor model to the international trade flow data, where loading
vectors and latent factors are estimated simultaneously.

We use monthly aggregate import and export volumes of commodity goods from January 1991
to December 2015, including a total of 172, 800 observations. The data comes from the International
Monetary Fund (IMF) Direction of Trade Statistics (DOTS) and involves trade among 24 countries
and regions. These include Australia (AU), Canada (CA), China Mainland (CN), Denmark (DK),
Finland (FI), France (FR), Germany (DE), Hong Kong (HK), Indonesia (ID), Ireland (IE), Italy
(IT), Japan (JP), Korea (KR), Malaysia (MY), Mexico (MX), Netherlands (NL), New Zealand
(NZ), Singapore (SG), Spain (ES), Sweden (SE), Taiwan (TW), Thailand (TH), United Kingdom
(GB), and the United States (US).

As discussed in Section 2, the latent factors can be interpreted as trading hubs while the factor
loadings represent import/export contributions to these hubs. Employing the generalized ratio-
based method and the screen plot, we determine 6 as the optimal number of trading hubs.

Table 4 presents the R2 across 4 different algorithms for the CP factor model and 2 algorithms for
the Tucker factor model: the auto-covariance based algorithm for the Tucker factor model (Tucker-
AC-IP) with h “ 1 by Han et al. (2022a) and the contemporary-covariance based counterpart
(Tucker-CC-IP). In the Tucker factor model, the number of dimensions of the latent hubs is selected
as p4, 4q, following Chen and Chen (2022). Among the algorithms for the CP factor model, CC-
ISO achieves the highest R2. AC-ISO follows closely behind, with a slightly lower R2 compared to
CC-ISO. However, the TPCA algorithm fails to adequately fit the model to the data, resulting in a
negative R2 value of -2.56.

To gain deeper insights into dynamic patterns, we conduct a five-year rolling study on the trade
flow data. Each rolling sample spans five years, starting from 1991 through 1995 for the first sample,
and progressing consecutively. Within each rolling sample, we estimate the factor loadings using
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Table 4: R-squared of fitting aggregate international trade flow data across different algorithms

Method CC-PCA AC-PCA TPCA GE Tucker-AC-IP Tucker-CC-IP

R2 0.7951 0.7921 -2.56 0.5782 0.521 0.521

the CC-ISO algorithm proposed in this paper. We assume that the factor loadings remain constant
in each rolling sample and fix the number of factors at r “ 6 across all samples. Each sample is
indexed by the mid-year of the five-year span.

Unlike the matrix factor model considered in Chen and Chen (2022), the factor loading vectors
in CP factor model are uniquely identified up to the sign change. Therefore, rotation analysis, such
as varimax rotation, is not applicable. Instead of applying varimax and interpreting latent hubs
by the dominant country/region, we analyze latent hubs based directly on their estimates from
the model. In our proposed algorithm, latent hubs are ranked by the corresponding eigenvalues of
the unfolded covariance matrix and we fix, with the first latent hub contributing the most to the
export/import volumes and variances. However, country contributions to each latent hub can vary
across different time periods.

Figure 10 illustrates the relationships between countries and latent hubs for three selected years.
The sizes of latent hub nodes are proportional to the strengths of the corresponding factors. The
relationships between countries and latent hubs, shown as dotted lines, are plotted using the loading
matrix on the export/import side after a truncation transformation. This is achieved by normalizing
the loading matrix so that the sum of all entries equals one. Therefore, each entry represents the
relative contribution of a country to a latent hub. The figure includes countries with the top
four contributions to any latent hubs. Some countries significantly contribute to more than one
latent hub, resulting in a stable number of countries on the export/import side, approximately
10. Countries are ranked by their total export/import volume to/from in-sample countries in the
selected sub-sample.

As shown in the plot, in 1995, the US had the highest export and import volume, dominating
Hub 1 on the export side and Hubs 1 to 4 on the import side. Hub 3 was significantly dominated
by China on the export side, with other participants including Japan, Germany, and Taiwan on
the export side, and the US, Hong Kong, and Korea on the import side, indicating deep trade
connections among these countries. Hub 6 was mainly utilized by European countries on both the
export and import sides, reflecting the impact of the foundation of the European Union in 1993.

In 2003, the US remained the country with the highest export and import volumes. However,
China surpassed Japan and Germany, becoming the country with the second highest export and
import volumes. On the export side, China actively participated in international trade within Hubs
1 to 4, along with the US, Germany, Japan, and European countries. The hub mainly used by
European countries experienced growth from 1995 and became the fifth largest hub in 2003. Hub 6
can be interpreted as the APEC hub, as it was primarily used by the US and Asian countries/regions,
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including Japan, China, Korea, and Taiwan.
By 2012, China had surpassed the US and became the country with the highest trade volume.

On the export side, Hubs 1 and 2 were dominated by China. Participants of Hubs 1 and 2 on
the import side were mainly from North America and Europe, indicating the growing importance
of China in international trade in the 2010s. Additionally, the composition of the hubs became
less geographically concentrated: while Hub 6 remained primarily used by European countries on
the export side, Canada and Mexico became significant participants in this hub on the import
side. Moreover, there was no hub predominantly dominated by Asian countries as in 2003. Japan,
Korea, and Singapore were important members of Hub 3, which was shared with the US, Germany,
the Netherlands, and France. This suggests that international trade became more global and less
regional by 2012.

7 Conclusion

Modeling high-dimensional tensor time series has gathered increasing attention recently, owing to
the availability of multidimensional datasets beyond the classical panel data structure. This paper
considers matrix and tensor factor models with a CP low-rank structure, offering a generalization
of classical vector factor models. We develop iterative simultaneous orthogonalization estimation
procedures based on contemporary covariance, preserving the tensor data structure. Theoretical
properties such as the rate of convergence and limiting distributions are investigated, assuming
each tensor dimension is comparable to or greater than the number of observations, and the tensor
rank might be fixed or divergent.

In contrast to auto-covariance-based estimation methods, we explore information from contem-
porary data and are also able to consistently estimate loadings and factors for uncorrelated tensor
observations where auto-covariance methods might fail. Additionally, we propose two generalized
eigenvalue-ratio estimators for rank selection and justify their consistency. A comprehensive simu-
lation study underscores the merits of our proposed method compared to existing methods. Fur-
thermore, empirical applications regarding sorted portfolios and international trade flows showcase
the practical relevance of our approach.
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Supplementary Material of
“Estimation and Inference for CP Tensor Factor Models”

Appendix A Proofs of Main Theorem

Proof of Theorem 4.1. Part (i). Recall pΣ “ T´1
řT

t“1 YtbYt, Θ “ EFtF
J
t , ai “ vecpai1bai2b

¨ ¨ ¨ b aiKq, d “ d1d2...dK . Let et “ vecpEtq. Write

rΣ :“ matrKs

`

pΣ
˘

“ AΘAJ ` Ψ˚.

Let Θ P Rrˆr have the eigenvalue decomposition Θ “ rV rΛrV J, where the diagonal matrix rΛ de-
notes its eigenvalues. Let U “ pu1, . . . , urq be the orthonormal matrix corresponding to ArV as in
Lemma B.1. We have }AAJ ´UUJ}2 ď δ and }AΘAJ ´U rΛUJ}2 ď λ1δ by the applications of the
error bound in Lemma B.1 with Λ “ rΛ the first time.

Let the top r eigenvectors of rΣ be pU “ ppu1, ..., purq P Rdˆr. By Wedin’s perturbation theorem
(Wedin, 1972) for any 1 ď j ď r,

}pujpuJ
j ´ uju

J
j }2 ď 2}AΘAJ ´ U rΛUJ ` Ψ˚}2{λj,˘ ď

`

2λ1δ ` 2}Ψ˚}2
˘L

λj,˘, (33)

where λj,˘ “ mintλj´1 ´ λj , λj ´ λj`1u. Combining (33) and the inequality }AAJ ´ UUJ}2 ď δ,
we have

}pujpuJ
j ´ aja

J
j }2 ď δ `

`

2λ1δ ` 2}Ψ˚}2
˘

{λj,˘. (34)

We formulate each puj P Rd to be a K-way tensor pUj P Rd1ˆ¨¨¨ˆdK . Let pUjk “ matkp pUjq, which is
viewed as an estimate of ajkvecpbK

l‰kajlq
J P Rdkˆpd{dkq. Then arcpcajk is the top left singular vector

of pUjk. By Lemma B.2,

}arcpcajk arcpcaJ

jk ´ ajka
J
jk}22 ^ p1{2q ď }pujpuJ

j ´ aja
J
j }22. (35)

Substituting (34) and Lemma A.1 into the above equation, we have the desired results.
Part (ii). For simplicity, consider the most extreme case where mintλi ´λi`1, λi ´λi´1u ď cλr for
all i, with λ0 “ 8, λr`1 “ 0, and c is sufficiently small constant. In such cases, we need to employ
Procedure 2 to the entire sample covariance tensor pΣ. Let the eigenvalue ratio w :“ λ1{λr “ Oprq.
Without loss of generality, assume Θ11 ě Θ22 ě ¨ ¨ ¨ ě Θrr. In general, the statement in the
theorem holds for number of initialization L ě Cd2 _ Cdr2w

2 , where a _ b “ maxta, bu. We prove
the statements through induction on factor index i starting from i “ 1 proceeding to i “ r. By the
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induction hypothesis, we already have estimators such that

›

›

›
parcpcajk parcpcaJ

jk ´ ajka
J
jk

›

›

›

2
ď Cϕ0, 1 ď j ď i´ 1, 1 ď k ď K, (36)

in an event Ω with high probability, where

ϕ20 “ C

¨

˝

Rp0q

λr
`

˜

Rp0q

λr

¸K´1
ˆ

λ1
λr

˙

` pδ21 ` δ{δ1q

ˆ

λ1
λr

˙

` δ1

˛

‚,

and Rp0q “ ϕp0q is defined in (19) in Theorem 4.1.
Applying Lemma A.2, we obtain that at the i-th step (i-th factor), we have

›

›

raℓkraJ
ℓk ´ aika

J
ik

›

›

2
ď ϕ20, 1 ď k ď K,

in the event Ω with probability at least 1 ´ T´c ´ d´c for at least one ℓ P rLs. It follows that this
estimator raℓk satisfies

›

›

›

pΣ ˆ2K
k“1 raℓk

›

›

›

2
ě

›

›

›

›

›

r
ÿ

j1,j2“1

Θj1,j2

K
ź

k“1

paJ
j1kraℓkqpaJ

j2kraℓkq

›

›

›

›

›

2

´
›

›Ψ ˆ2K
k“1 raℓk

›

›

2

ě

›

›

›

›

›

Θii

K
ź

k“1

paJ
ikraℓkq2

›

›

›

›

›

2

´

›

›

›

›

›

›

r
ÿ

pj1,j2q‰pi,iq

Θj1,j2

K
ź

k“1

paJ
j1kraℓkqpaJ

j2kraℓkq

›

›

›

›

›

›

2

´
›

›Ψ ˆ2K
k“1 raℓk

›

›

2

where Ψ is defined by unfolding Ψ˚ into a d1 ˆ d2 ˆ ¨ ¨ ¨ ˆ dK ˆ d1 ˆ d2 ˆ ¨ ¨ ¨ ˆ dK tensor. Let
ψi “ CRp0q{Θii ` δ21w. By (53) and the last part of the proof of Lemma A.2, as }Ψ˚}2{λr ď ϕ20 and
p1 ` δ1q

śK
k“2pδk ` ψiqw ď ϕ20, it follows that

›

›

›

pΣ ˆ2K
k“1 raℓk

›

›

›

2
ě p1 ´ ϕ40qKΘii ´ p1 ` δ1q

K
ź

k“2

pδk ` ψiqλ1 ´ ϕ20Θii

ě p1 ´ 3ϕ20qΘii.

Now consider the best initialization ℓ˚ P rLs by using ℓ˚ “ argmaxs |pΣˆ2K
k“1rask|. By the calculation

above, it is immediate that

›

›

›

pΣ ˆ2K
k“1 raℓ˚k

›

›

›

2
ě p1 ´ 3ϕ20qΘii. (37)

Let raℓ˚
“ vecpraℓ˚1 b ¨ ¨ ¨ b raℓ˚Kq. If }aia

J
i ´ raℓ˚

raJ
ℓ˚

}2 ě Cϕ0 for a sufficiently large constant C, we
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have that

›

›

›

pΣ ˆ2K
k“1 raℓ˚k

›

›

›

2
ď

›

›

›

›

›

r
ÿ

j1,j2“1

Θj1,j2paJ
j1raℓ˚

qpaJ
j2raℓ˚

q

›

›

›

›

›

2

`
›

›Ψ ˆ2K
k“1 raℓk

›

›

2

ď

›

›

›

›

›

r
ÿ

j1,j2“i

Θj1,j2paJ
j1raℓ˚

qpaJ
j2raℓ˚

q

›

›

›

›

›

2

` ϕ20Θii ` rν2Kλ1

ď p1 ` δ1qp1 ´ C2ϕ20qΘii ` ϕ20Θii ` rν2Kλ1.

If ν satisfies rν2Kpλ1{λrq ď cϕ20 for a small positive constant c, as δ1 ď ϕ20, we have

›

›

›

pΣ ˆ2K
k“1 raℓ˚k

›

›

›

2
ď p1 ´ C 1ϕ20qΘii,

where C 1 is a sufficiently large constant. It contradicts (37) above. This implies that for ℓ “ ℓ˚, we
have

}aia
J
i ´ raℓ˚

raJ
ℓ˚

}2 ď Cϕ0.

By Lemma B.2, with parcpcaik “ raℓ˚k, in the event Ω with probability at least 1 ´ T´c ´ d´c,

›

›

›
parcpcaik parcpcaJ

ik ´ aika
J
ik

›

›

›

2
ď Cϕ0, 1 ď k ď K.

This finishes the proof of part (ii) by an induction argument along with the requirements rν2Kpλ1{λrq ď

cϕ20.

Lemma A.1. Suppose Assumptions 4.1, 4.2, 4.3 hold and δ ă 1. Let rΣ “ AΘAJ ` Ψ˚ and
1{γ “ 2{γ1 ` 1{γ2. In an event with probability at least 1 ´ T´c ´ d´c, we have

}Ψ˚}2 ď Cλ1

˜

c

r ` log T

T
`

pr ` log T q1{γ

T

¸

` C

˜

c

d logpdq

T
`
d logpdq

T
` 1

¸

` Cλ
1{2
1

˜

c

d logpdq

T
`
d logpdq

T

¸

. (38)

Proof. Let Υ0 “ T´1
řT

t“1

řr
i,j“1 fitfjtaia

J
j , Ep¨q “ Ep¨|fit, 1 ď i ď r, 1 ď t ď T q. Define et “
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vecpEtq. Write

rΣ “
1

T

T
ÿ

t“1

vecpYtqvecpYtq
J

“ AΘAJ `

r
ÿ

i,j“1

1

T

T
ÿ

t“1

pfi,tfj,t ´ Efi,tfj,tq aiaJ
j `

1

T

T
ÿ

t“1

ete
J
t

`
1

T

T
ÿ

t“1

r
ÿ

i“1

fi,taie
J
t `

1

T

T
ÿ

t“1

r
ÿ

i“1

fi,teta
J
i

:“ AΘAJ ` ∆1 ` ∆2 ` ∆3 ` ∆4.

That is, Ψ˚ “ ∆1 ` ∆2 ` ∆3 ` ∆4.
We first bound }∆1}2. Note that ∆1 “ A

´

pΘ ´ Θ
¯

AJ. For any unit vector u in Rr, there exist
uj P Rr with }uj}2 ď 1, j “ 1, ..., Nr,ϵ such that max}u}2ď1min1ďjďNr,ϵ }u´ uj}2 ď ϵ. The standard
volume comparison argument implies that the covering number Nr,ϵ “ tp1 ` 2{ϵqru. Then, there
exist uj P Rr, 1 ď j ď Nr,1{3 :“ 7r, such that }uj}2 “ 1 and

}pΘ ´ Θ}2 ´ max
1ďjďNr,1{3

ˇ

ˇ

ˇ
uJ
j ppΘ ´ Θquj

ˇ

ˇ

ˇ
ď p2{3q}pΘ ´ Θ}2.

It follows that

}pΘ ´ Θ}2 ď 3 max
1ďjďNr,1{3

ˇ

ˇ

ˇ
uJ
j ppΘ ´ Θquj

ˇ

ˇ

ˇ
.

As 1{γ “ 2{γ1 ` 1{γ2, by Theorem 1 in Merlevède et al. (2011),

P
´

T
ˇ

ˇ

ˇ
uJ
j Θ

´1{2ppΘ ´ ΘqΘ´1{2uj

ˇ

ˇ

ˇ
ě x

¯

ď T exp

ˆ

´
xγ

c1

˙

` exp

ˆ

´
x2

c2T

˙

` exp

˜

´
x2

c3T
exp

˜

xγp1´γq

c4plog xqγ

¸¸

. (39)

Hence,

P
´

T
›

›

›
Θ´1{2ppΘ ´ ΘqΘ´1{2

›

›

›

2
{3 ě x

¯

ď N2
r,1{3T exp

ˆ

´
xγ

c1

˙

`N2
r,1{3 exp

ˆ

´
x2

c2T

˙

`N2
r,1{3 exp

˜

´
x2

c3T
exp

˜

xγp1´γq

c4plog xqγ

¸¸

.

Choosing x —
a

T pr ` log T q ` pr ` log T q1{γ , in an event Ω1 with probability at least 1 ´ T´c1{2,

›

›

›
Θ´1{2ppΘ ´ ΘqΘ´1{2

›

›

›

2
ď C

c

r ` logpT q

T
`
Cpr ` log T q1{γ

T
.

4



It follows that, in the event Ω1,

}∆1}2 ď }A}22λ1 ¨

›

›

›
Θ´1{2ppΘ ´ ΘqΘ´1{2

›

›

›

2

ď Cλ1

˜

c

r ` log T

T
`

pr ` log T q1{γ

T

¸

,

and,

}Υ0}2 ď

›

›

›
AΘAJ

›

›

›

2
`

›

›

›
A

´

pΘ ´ Θ
¯

AJ
›

›

›

2

ď }A}22λ1 `

›

›

›
A

´

pΘ ´ Θ
¯

AJ
›

›

›

2

ď p1 ` δqλ1 ` Cλ1

˜

c

r ` log T

T
`

pr ` log T q1{γ

T

¸

(40)

:“ ∆Υ.

Note that ∆Υ À λ1.

Next, consider }∆2}2. By Assumption 4.1 and Lemma A.1 in Shu and Nan (2019), we have

P
`

}et}
2
2 ´ E}et}

2
2 ě x

˘

“ P
`

ξJ
t H

JHξt ´ EξJ
t H

JHξt ě x
˘

ď 4 exp

˜

´C 1

ˆ

x

}HJH}F

˙
1

1`2{ϑ

¸

ď 4 exp

˜

´C 1

ˆ

x
?
d

˙
ϑ

ϑ`2

¸

.

Note that E}et}
2
2 “ EξJ

t H
JHξt “ EtrpHJHξtξ

J
t q “ trpHJHq “ trpHHJq — d, and }HJH}2F “

}HHJ}2F “ }Σe}2F — d. Choosing x — d, we have

P
´

}et}2 ě C
?
d

¯

ď 4 exp
´

´C 1d
ϑ

2ϑ`4

¯

.

Let N :“ }ete
J
t 1t}et}2ďC

?
du

}2 and σ20 :“ }
řT

t“1 Epete
J
t 1t}et}2ďC

?
du

q2}2. Then, by Assumption 4.1,
N ď C2d and

σ20 ď T }Epete
J
t ete

J
t q}2 “ T }EpHξtξ

J
t H

JHξtξ
J
t H

Jq}2

ď T }EpHξtξ
J
t H

JHξtξ
J
t H

Jq}F “ T }EpξJ
t H

JHξtξ
J
t H

JHξtq}F

“ TE
ÿ

j,l

pHJHqjlξjtξlt
ÿ

j1l1

pHJHqj1l1ξj1tξl1t

ď C 1
0T

¨

˝

ÿ

j,l

pHJHq2jl `
ÿ

j,l

pHJHqjjpH
JHqll

˛

‚

“ C 1
0T

`

}HJH}2F ` rtrpHJHqs2
˘

ď C0Td.
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By matrix Bernstein inequality (see, e.g., Theorem 5.4.1 of Vershynin (2018)),

P

˜›

›

›

›

›

T
ÿ

t“1

”

ete
J
t 1t}et}2ďC

?
du

´ EeteJ
t 1t}et}2ďC

?
du

ı

›

›

›

›

›

2

ě x

¸

ď 2d exp

ˆ

´
x2{2

σ20 `Nx{3

˙

. (41)

Choosing x —
a

Td logpdq ` d logpdq, with probability at least 1 ´ d´c1 ,

›

›

›

›

›

1

T

T
ÿ

t“1

ete
J
t 1t}et}2ďC

?
du

´ EeteJ
t 1t}et}2ďC

?
du

›

›

›

›

›

2

ď C1

c

d logpdq

T
` C1 ¨

d logpdq

T
(42)

Define M :“ t1 ď t ď T : }et}2 ě C
?
du. Since 1

t}et}2ěC
?
du

are independent Bernoulli random
variable and logpT q ď dϑ{p2ϑ`4q, we have

E|M | “ TP
´

}et}2 ě C
?
d

¯

ď 4T exp
´

´C 1d
ϑ

2ϑ`4

¯

ď T´c2 .

By Chernoff bound for Bernoulli random variables,

Pp|M | ě Cq ď exp p´T c2q . (43)

It follows that

P

˜›

›

›

›

›

T
ÿ

t“1

ete
J
t 1t}et}2ěC

?
du

›

›

›

›

›

2

ě x

¸

ď P
´

|M |max
t

}et}
2
2 ě x

¯

ď Pp|M | ě Cq ` P
´

|M | ă C, |M |max
t

}et}
2
2 ě x

¯

ď exp p´T c2q ` P
´

max
t

}et}
2
2 ě x{C

¯

Choosing x — d, we have, with probability at least 1 ´ expp´T c2q ´ T´c2 ,

›

›

›

›

›

1

T

T
ÿ

t“1

ete
J
t 1t}et}2ěC

?
du

›

›

›

›

›

2

ď C2 ¨
d

T
. (44)

Similarly,

P
´›

›

›
EeteJ

t 1t}et}2ěC
?
du

›

›

›

2
ą 0

¯

“ P
´

}et}2 ě C
?
d

¯

ď 4 exp
´

´C 1d
ϑ

2ϑ`4

¯

ď T´c3 . (45)
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Combing (42), (44), (45), in an event Ω2 with probability at least 1 ´ T´c4 ´ d´c1 ,

}∆2}2 ď

›

›

›

›

›

1

T

T
ÿ

t“1

ete
J
t ´ Σe

›

›

›

›

›

2

` }Σe}2

ď

›

›

›

›

›

1

T

T
ÿ

t“1

ete
J
t 1t}et}2ďC

?
du

´ EeteJ
t 1t}et}2ďC

?
du

›

›

›

›

›

2

`

›

›

›

›

›

1

T

T
ÿ

t“1

ete
J
t 1t}et}2ěC

?
du

›

›

›

›

›

2

`

›

›

›
EeteJ

t 1t}et}2ěC
?
du

›

›

›

2
` }Σe}2

ď C2

c

d logpdq

T
` C2 ¨

d logpdq

T
` C2

Next, consider }∆3}2. Note that }∆4}2 is the same as }∆3}2. Let Pp¨q “ Pp¨|F1, ..., FT q and
Ep¨q “ Ep¨|F1, ..., FT q be the conditional probability and conditional expectation given the factor
process, respectively. Similar to the derivation for }∆2}2, let

N1 :“

›

›

›

›

›

r
ÿ

i“1

fitaie
J
t 1t}et}2ďC

?
du

›

›

›

›

›

2

,

σ21 :“ max

$

&

%

›

›

›

›

›

T
ÿ

t“1

E
r

ÿ

i,j“1

fitfjtaie
J
t eta

J
j 1t}et}2ďC

?
du

›

›

›

›

›

2

,

›

›

›

›

›

T
ÿ

t“1

E
r

ÿ

i,j“1

fitfjteta
J
i aje

J
t 1t}et}2ďC

?
du

›

›

›

›

›

2

,

.

-

.

It is easy to show

N1 ď C
?
d

›

›

›

›

›

r
ÿ

i“1

fitai

›

›

›

›

›

2

,

σ21 ď C3Tdmax

$

&

%

›

›

›

›

›

1

T

T
ÿ

t“1

r
ÿ

i,j“1

fitfjtaia
J
j

›

›

›

›

›

2

,

›

›

›

›

›

1

Td

T
ÿ

t“1

r
ÿ

i,j“1

fitfjta
J
i aj

›

›

›

›

›

2

,

.

-

:“ σ22.

By matrix Bernstein inequality,

P

˜›

›

›

›

›

T
ÿ

t“1

«

r
ÿ

i“1

fi,taie
J
t 1t}et}2ďC

?
du

´ E
r

ÿ

i“1

fi,taie
J
t 1t}et}2ďC

?
du

ff›

›

›

›

›

2

ě x

¸

ď 2d exp

ˆ

´
x2{2

σ21 `N1x{3

˙

.

Choosing x —
?
d logpdq}

řr
i“1 fitai}2 `

a

logpdqσ2, with probability at least 1 ´ d´c4 ,

›

›

›

›

›

1

T

T
ÿ

t“1

r
ÿ

i“1

fi,taie
J
t 1t}et}2ďC

?
du

´ E
r

ÿ

i“1

fi,taie
J
t 1t}et}2ďC

?
du

›

›

›

›

›

2

ď C4

a

logpdq

T
σ2 ` C4

?
d logpdq}

řr
i“1 fitai}2

T
.

As
?
r logpT q1{γ1 À

?
d, by Assumption 4.2, with probability at least 1 ´ T´c5 ,

›

›

›

›

›

r
ÿ

i“1

fitai

›

›

›

›

›

2

“ }FJ
t A

J}2 ď p1 ` δq}Ft}2 À
?
rplogpT qq1{γ1

a

λ1 À
a

dλ1.
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By (40), in the event Ω1, σ22 À Tdλ1. Then, with probability at least 1 ´ T´c1{2 ´ T´c5 ´ d´c4 ,

›

›

›

›

›

1

T

T
ÿ

t“1

r
ÿ

i“1

fi,taie
J
t 1t}et}2ďC

?
du

´ E
r

ÿ

i“1

fi,taie
J
t 1t}et}2ďC

?
du

›

›

›

›

›

2

ď C5

c

d logpdq

T

a

λ1 ` C5 ¨
d logpdq

?
λ1

T
.

Similar to (44),

P

˜›

›

›

›

›

T
ÿ

t“1

r
ÿ

i“1

fi,taie
J
t 1t}et}2ěC

?
du

›

›

›

›

›

2

ě x

¸

ď Pp|M | ą Cq ` P

˜

|M | ă C, |M |max
t

›

›

›

›

›

r
ÿ

i“1

fitai

›

›

›

›

›

2

¨ }et}2 ě x

¸

.

Choosing x — d
?
λ1, we have with probability at least 1 ´ expp´T c2q ´ T´c2 ´ T´c5 ,

›

›

›

›

›

1

T

T
ÿ

t“1

r
ÿ

i“1

fi,taie
J
t 1t}et}2ěC

?
du

›

›

›

›

›

2

ď C6 ¨
d

?
λ1
T

Thus, in an event Ω3 with probability 1 ´ T´c1{2 ´ T´c6 ´ d´c4 ,

}∆3}2 ď

›

›

›

›

›

1

T

T
ÿ

t“1

r
ÿ

i“1

fi,taie
J
t 1t}et}2ďC

?
du

´ E
r

ÿ

i“1

fi,taie
J
t 1t}et}2ďC

?
du

›

›

›

›

›

2

`

›

›

›

›

›

1

T

T
ÿ

t“1

r
ÿ

i“1

fi,taie
J
t 1t}et}2ěC

?
du

›

›

›

›

›

2

`

›

›

›

›

›

E
r

ÿ

i“1

fi,taie
J
t 1t}et}2ěC

?
du

›

›

›

›

›

2

ďC7

c

d logpdq

T

a

λ1 ` C7 ¨
d logpdq

?
λ1

T
.

Therefore, in the event Ω1 XΩ2 XΩ3 with probability at least 1´T´c ´d´c, we have the desired
bound for }Ψ˚}2.

Lemma A.2. Let λ1{λr “ w. Assume d1 À λ1 and δ21w ď c for a sufficiently small positive
constant c. Apply random projection in Procedure 2 to the whole sample covariance tensor pΣ with
L ě Cd2 _Cdr2w

2. Denote the estimated CP basis vectors as raℓk, for 1 ď ℓ ď L, 1 ď k ď K. Then
in an event with probability at least 1 ´ T´c ´ d´c, we have for any CP factor loading vectors tuple
paik, 1 ď k ď Kq, there exist ji P rLs such that

›

›

raji,kraJ
ji,k

´ aika
J
ik

›

›

2
ď ψi, 2 ď k ď K, (46)

›

›

raji,1raJ
ji,1 ´ ai1a

J
i1

›

›

2
ď ψi ` pδ{δ1qw ` ψK´1

i w, (47)

where ψi “ CRp0q{Θii ` δ21w, Rp0q “ ϕp0q is defined in (19) in Theorem 4.1, and 1 ď i ď r.

Proof. Without loss of generality, assume Θ11 ě Θ22 ě ¨ ¨ ¨ ě Θrr. Then Θrr ě λr,Θ11 ď λ1. Let

8



pΘij “ T´1
řT

t“1 fitfjt and ΣE “ EEt b Et. Write

pΣ “
1

T

T
ÿ

t“1

Yt b Yt

“

r
ÿ

i,j“1

Θij bK
k“1 aik b2K

k“K`1 ajk `

r
ÿ

i,j“1

ppΘij ´ Θijq bK
k“1 aik b2K

k“K`1 ajk

`
1

T

T
ÿ

t“1

r
ÿ

i“1

fit bK
k“1 aik b Et `

1

T

T
ÿ

t“1

r
ÿ

i“1

fitEt b2K
k“K`1 aik `

˜

1

T

T
ÿ

t“1

Et b Et ´ ΣE

¸

` ΣE

:“
r

ÿ

i,j“1

Θij bK
k“1 aik b2K

k“K`1 ajk ` ∆1 ` ∆2 ` ∆3 ` ∆4 ` ∆5,

with ai,K`k “ aik for all 1 ď k ď K. Let Ψ “ ∆1 ` ∆2 ` ∆3 ` ∆4 ` ∆5. Let Ξpθq “ matrK´1s
pΣ ˆ1

ˆK`1θ. Unfold Ψ P Rd1ˆd2ˆ¨¨¨ˆdKˆd1ˆd2ˆ¨¨¨ˆdK to be an order 4 tensor of dimension pd{d1q ˆ

pd{d1q ˆ d1 ˆ d1 and denote it as rΨ, and also define r∆k, k “ 1, ..., 5 in a similar way. Then

Ξpθq “

r
ÿ

i,j“1

Θijpa
J
i1θaj1qraira

J
j ` rΨ ˆ3 ˆ4θ,

where rai “ vecpai2 b ¨ ¨ ¨ aiKq. Let rA “ pra1, ...,rarq P Rpd{d1qˆr.
First, consider the upper bound of }rΨˆ3ˆ4θ}2. By concentration inequality for matrix Gaussian

sequence (see, for example Theorem 4.1.1 in Tropp et al. (2015)) and employing similar arguments
in the proof of Lemma A.1, we have, with probability at least 1 ´ d´c

›

›

›

r∆4 ˆ3 ˆ4θ
›

›

›

2
“

›

›

›

›

›

›

ÿ

k,l

θpklqp
r∆4q¨¨kl

›

›

›

›

›

›

2

ď Cmax
!›

›

›
matp1q,p234qp

r∆4q

›

›

›

2
,
›

›

›
matp2q,p134qp

r∆4q

›

›

›

2

)

¨
a

logpdq

ď C
a

d1

˜

c

d logpdq

T
`
d logpdq

T

¸

¨
a

logpdq,

where θpklq is the pk, lqth element of θ, p r∆4q¨¨kl represents the pk, lqth (3,4) slice of r∆4, and matp1q,p234qp¨q

denotes the reshaping of fourth-order tensor into a matrix by collapsing its first indices as rows, and
the second, third, fourth indices as columns. In the last step, we apply the arguments in the proof
of Lemma A.1. Similarly, we have, with probability at least 1 ´ d´c,

}ΣE ˆ3 ˆ4θ}2 ď C
a

logpdq.

9



And, with probability at least 1 ´ T´c ´ d´c,

›

›

›
p r∆1 ` r∆2 ` r∆3 ` r∆4q ˆ3 ˆ4θ

›

›

›

2
ďCλ1

˜

c

r ` log T

T
`

pr ` log T q1{γ

T

¸

¨
a

logpdq

` Cλ
1{2
1

˜

c

d logpdq

T
`
d logpdq

T

¸

¨
a

logpdq.

As d1 À λ1, it follows that in an event Ω0 with probability at least 1 ´ T´c ´ d´c,

›

›

›

rΨ ˆ3 ˆ4θ
›

›

›

2
ď C}Ψ˚}2

a

logpdq. (48)

Consider the i-th factor and rewrite Ξpθq as follows

Ξpθq “ Θiipa
J
i1θai1qraira

J
i `

ÿ

pj1,j2q‰pi,iq

Θj1j2paJ
j11θaj21qraj1raJ

j2 ` rΨ ˆ3 ˆ4θ. (49)

Suppose now we repeatedly sample θℓ „ θ, for ℓ “ 1, ..., L. By the anti-concentration inequality for
Gaussian random variables (see Lemma B.1 in Anandkumar et al. (2014a)), we have

P

˜

max
1ďℓďL

pai1 d ai1qJvecpθℓq ď
a

2 logpLq ´
log logpLq

4
a

logpLq
´

a

2 logp8q

¸

ď
1

4
, (50)

where d denotes Kronecker product. Let

ℓ˚ “ arg max
1ďℓďL

pai1 d ai1qJvecpθℓq.

Note that pai1 d ai1qJvecpθℓq and pId21 ´ pai1 d ai1qpai1 d ai1qJqvecpθℓq are independent. Since the
definition of ℓ˚ depends only on pai1 dai1qJvecpθℓq, this implies that the distribution of pId21 ´pai1 d

ai1qpai1 d ai1qJqvecpθℓq does not depend on ℓ˚.
By Gaussian concentration inequality of 1-Lipschitz function, we have

P
ˆ

max
j1,j2ďr

`

aj11 d aj21
˘J`

Id21 ´ pai1 d ai1qpai1 d ai1qJ
˘

vecpθℓq ě
a

4 logprq `
a

2 logp8q

˙

ď
1

4
.

Moreover, for the reminder bias term paj11 d aj21qJpai1 d ai1qpai1 d ai1qJvecpθℓq, we have,

›

›

›

›

›

›

ÿ

pj1,j2q‰pi,iq

Θj1,j2paj11 d aj21qJpai1 d ai1qpai1 d ai1qJvecpθℓq ¨ raj1raJ
j2

›

›

›

›

›

›

2

ď pai1 d ai1qJvecpθℓq ¨

›

›

›

rA
`

Θ ˝
`

AJ
1 ai1a

J
i1A1 ´ eii

˘˘

rAJ
›

›

›

2

ď pai1 d ai1qJvecpθℓq} rA}22}Θ}2
›

›AJ
1 ai1a

J
i1A1 ´ eii

›

›

2

ď p1 ` δ{δ1qδ21λ1pai1 d ai1qJvecpθℓq,
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where ˝ denotes Hadamard product and eii is a d1 ˆ d1 matrix with the pi, iq-th element be 1 and
all the others be 0.

Thus, we obtain the top eigengap

pai1 d ai1qJvecpθℓ˚
qΘii ´

›

›

›

›

›

›

ÿ

pj1,j2q‰pi,iq

Θj1j2

`

paj11 d aj21qJvecpθℓ˚

˘

raj1raJ
j2

›

›

›

›

›

›

2

ě p1 ´ 2δ21wq

˜

a

2 logpLq ´
log logpLq

4
a

logpLq
´

a

2 logp8q

¸

Θii ´

´

a

4 logprq `
a

2 logp8q

¯

wΘii

ě C0

a

logpdqΘii, (51)

with probability at least 1
2 , by letting L ě Cd_ Cr2w

2 .
Since θℓ are independent samples, we instead take Li “ Li1`¨ ¨ ¨`LiM forM “ rC1 logpdq{ logp2qs

and Li1, ..., LiM ě Cd_ Cr2w
2 . We define

ℓ
pmq
˚ “ arg max

1ďℓďLim

pai1 d ai1qJvecpθℓq, ℓ˚ “ arg max
1ďℓďLi

pai1 d ai1qJvecpθℓq.

We then have, by independence of θℓ, that the above statement (51) for the i-th factor holds in an
event Ωi with probability at least 1 ´ d´C1 . By Wedin’s perturbation theory, we have in the event
Ω0 X Ωi,

›

›

paℓ˚
paJ
ℓ˚

´ raira
J
i

›

›

2
ď
CRp0q

Θii
` δ21w,

where paℓ˚
is the top left singular vector of Ξpθℓ˚

q, and Rp0q “ ϕp0q is defined in (19) in Theorem
4.1. By Lemma B.2,

›

›

raℓ˚,kraJ
ℓ˚,k ´ aika

J
ik

›

›

2
ď
CRp0q

Θii
` δ21w, 2 ď k ď K. (52)

Now consider to obtain raℓ˚,1. Write ψi “ CRp0q{Θii ` δ21w. Note that

pΣ ˆK
k“2 raℓ˚,k ˆ2K

k“K`2 raℓ˚,k “

K
ź

k“2

`

raJ
ℓ˚,kaik

˘2
Θiiai1a

J
i1 ` Ψ ˆK

k“2 raℓ˚,k ˆ2K
k“K`2 raℓ˚,k

`
ÿ

pj1,j2q‰pi,iq

K
ź

k“2

`

raJ
ℓ˚,kaj1k

˘ `

raJ
ℓ˚,kaj2k

˘

Θj1j2aj11a
J
j21.

11



By Lemma A.1 and (52), in the event Ω0 X Ω1,

›

›Ψ ˆK
k“2 raℓ˚,k ˆ2K

k“K`2 raℓ˚,k

›

›

2
ď }Ψ˚}2,

K
ź

k“2

`

raJ
ℓ˚,kaik

˘2
ě p1 ´ ψ2

i qK´1.

Since

max
j1‰i

ˇ

ˇaJ
j1kraℓ˚,k

ˇ

ˇ “ max
j1‰i

ˇ

ˇ

raJ
ℓ˚,kaika

J
ikaj1k ` raJ

ℓ˚,kpI ´ aika
J
ikqaj1k

ˇ

ˇ

ď max
j1‰i

ˇ

ˇ

raJ
ℓ˚,kaik

ˇ

ˇ

ˇ

ˇaJ
ikaj1k

ˇ

ˇ ` max
j1‰i

›

›

raJ
ℓ˚,kpI ´ aika

J
ikq

›

›

2

›

›pI ´ aika
J
ikqaj1k

›

›

2

ď

b

1 ´ ψ2
i δk ` ψi

b

1 ´ δ2k ď δk ` ψi, (53)

we have
›

›

›

›

›

›

ÿ

pj1,j2q‰pi,iq

K
ź

k“2

`

raJ
ℓ˚,kaj1k

˘ `

raJ
ℓ˚,kaj2k

˘

Θj1j2aj11a
J
j21

›

›

›

›

›

›

2

ď p1 ` δ1q

K
ź

k“2

pδk ` ψiqλ1

ď CKpδ{δ1 ` ψK´1
i qwΘii.

By Wedin’s perturbation theory,

›

›

raℓ˚,1raJ
ℓ˚,1 ´ ai1a

J
i1

›

›

2
ď
CRp0q

Θii
` pδ{δ1qw ` ψK´1

i w. (54)

Repeat the same argument again for all 1 ď i ď r factors, and let L “
ř

i Li ě Cd2 _Cdr2w
2

ě

Cdr logpdq _ Cr2w
2`1 logpdq. We have, in the event Ω0 X Ω1 X ¨ ¨ ¨ X Ωr with probability at least

1 ´ T´c ´ d´c, (52) and (54) hold for all i.

Proof of Theorem 4.2. Recall pA
pmq

k “ ppa
pmq

1k , . . . ,pa
pmq

rk q P Rdkˆr, pΣ
pmq

k “ pA
pmqJ

k
pA

pmq

k , and pB
pmq

k “

pA
pmq

k ppΣ
pmq

k q´1 “ ppb
pmq

1k , ...,pb
pmq

rk q P Rdkˆr. Let Ep¨q “ Ep¨|Ft, 1 ď t ď T q and Pp¨q “ Pp¨|Ft, 1 ď t ď

T q. Also let

λi “
1

T

T
ÿ

t“1

fitfit.

Without loss of generality, assume Θ11 ě Θ22 ě ¨ ¨ ¨ ě Θrr. Then Eλr “ Θrr ě λr,Eλ1 “ Θ11 ď λ1.
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Write

pΣ “
1

T

T
ÿ

t“1

Yt b Yt

“

r
ÿ

i“1

λi b2K
k“1 aik `

r
ÿ

i‰j

1

T

T
ÿ

t“1

fitfjt bK
k“1 aik b2K

k“K`1 ajk `
1

T

T
ÿ

t“1

Et b Et

`
1

T

T
ÿ

t“1

r
ÿ

i“1

fit bK
k“1 aik b Et `

1

T

T
ÿ

t“1

r
ÿ

i“1

fitEt b2K
k“K`1 aik

:“
r

ÿ

i“1

λi b2K
k“1 aik ` ∆1 ` ∆2 ` ∆3 ` ∆4, (55)

with ai,K`k “ aik for all 1 ď k ď K. Let Ψ “ ∆1 ` ∆2 ` ∆3 ` ∆4.
By Theorem 4.1, in an event Ω0 with probability at least 1 ´ T´C1 ´ d´C1 ,

}pa
p0q

ik pa
p0qJ

ik ´ aika
J
ik}2 ď ψ0.

At m-th step, let

ψm,i,k :“ }pa
pmq

ik pa
pmqJ

ik ´ aika
J
ik}2, ψm,k :“ max

i
ψm,i,k, ψm “ max

k
ψm,k. (56)

Let giℓ “ biℓ{}biℓ}2 and pg
pmq

iℓ “ pb
pmq

iℓ {}pb
pmq

iℓ }2. Given pa
pmq

iℓ (1 ď i ď r, 1 ď ℓ ď K), the pm ` 1qth
iteration produces estimates pa

pm`1q

ik , which is the top left singular vector of pΣˆℓPr2Ksztk,K`ku
pb

pmqJ

iℓ ,
or equivalently pΣ ˆℓPr2Ksztk,K`ku pg

pmqJ

iℓ . Note that pΣ “
řr

j“1 λj b2K
ℓ“1 ajℓ ` Ψ, with aj,ℓ`K “ ajℓ.

The “noiseless" version of this update is given by

pΣ ˆℓPr2Ksztk,K`ku g
J
iℓ “ λiaika

J
ik ` Ψ ˆℓPr2Ksztk,K`ku g

J
iℓ. (57)

At pm` 1q-th iteration, for any 1 ď i ď r, we have

pΣ ˆℓPr2Ksztk,K`ku pg
pmqJ

iℓ “

r
ÿ

j“1

rλj,iajka
J
jk ` Ψ ˆℓPr2Ksztk,K`ku pg

pmqJ

iℓ ,

where

rλj,i “ λj
ź

ℓPr2Ksztk,K`ku

aJ
jℓpg

pmq

iℓ . (58)
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Let

λj,i “ Θjj

ź

ℓPr2Ksztk,K`ku

aJ
jℓpg

pmq

iℓ ,

α “
a

1 ´ δmax ´ pr1{2 ` 1qψ0{
a

1 ´ 1{p4rq,

ϕm,ℓ “ 1 ^
ψm,ℓ

?
2r

α
a

1 ´ 1{p4rq
,

ϕm “ max
ℓ
ϕm,ℓ.

We may assume without loss of generality aJ
jℓpa

pmq

jℓ ě 0 for all pj, ℓq. Similar to the proofs of Theorem
3 in Han and Zhang (2023), we can show

max
jďr

}pa
pmq

jℓ ´ ajℓ}2 ď ψm,ℓ{
a

1 ´ 1{p4rq,
›

›pb
pmq

jℓ

›

›

2
ď } pB

pmq

ℓ }2 ď

ˆ

a

1 ´ δℓ ´
r1{2ψ0

a

1 ´ 1{p4rq

˙´1

,

(59)
›

›

pg
pmq

jℓ ´ bjℓ{}bjℓ}2
›

›

2
ď pψm,ℓ{αq

a

2r{p1 ´ 1{p4rqq. (60)

Moreover, (59) provides

max
i‰j

ˇ

ˇaJ
iℓpg

pmq

jℓ

ˇ

ˇ ď ψm,ℓ{
a

1 ´ 1{p4rq,
ˇ

ˇaJ
jℓpg

pmq

jℓ

ˇ

ˇ ě α, (61)

as pa
pmqJ

iℓ pg
pmq

jℓ “ Iti “ ju{}pb
pmq

jℓ }2. Then, for j ‰ i,

λj,i{λi,i ď
`

λ1{Θii

˘

K
ź

ℓ‰k

˜

ψm,ℓ{
a

1 ´ 1{p4rq

1 ´ ψm,ℓ{
a

1 ´ 1{p4rq

¸2

.

Employing similar arguments in the proof of Lemma A.1, in an event Ω1 with probability at least
1 ´ T´c1 , we have

›

›

›

pΘ ´ Θ
›

›

›

2
ď C1λ1

˜

c

r ` log T

T
`

pr ` log T q1{γ

T

¸

, (62)

In the event Ω1, we also have

max
1ďj1,j2ďr

ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

fj1,tfj2,t ´ Efj1,tfj2,t

ˇ

ˇ

ˇ

ˇ

ˇ

ď C1

a

Θj1,j1Θj2,j2

˜

c

r ` log T

T
`

pr ` log T q1{γ

T

¸

.

It follows that in the event Ω1, for any 1 ď j ď r,

|λj ´ Θjj | ď C1Θjj

˜

c

r ` log T

T
`

pr ` log T q1{γ

T

¸

.
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By Wedin’s theorem (Wedin, 1972), in the event Ω1,

}pa
pm`1q

ik pa
pm`1qJ

ik ´ aika
J
ik}2 ď

2
›

›

›

řr
j‰i

rλj,iajka
J
jk

›

›

›

2
` 2}Ψ ˆℓPr2Ksztk,K`ku pg

pmqJ

iℓ }2

rλi,i

ď
4}Ak}22maxj‰i |λj,i| ` 4}Ψ ˆℓPr2Ksztk,K`ku pg

pmqJ

iℓ }2

α2k´2Θii
. (63)

To bound the numerator of (63), we write

∆1,1 “

r
ÿ

j2‰i

1

T

T
ÿ

t“1

fitfj2,t bK
ℓ“1 aiℓ b2K

ℓ“K`1 aj2ℓ ˆℓPr2Ksztk,K`ku pg
pmqJ

iℓ ,

∆1,2 “

r
ÿ

j1‰i

1

T

T
ÿ

t“1

fj1,tfit bK
ℓ“1 aj1ℓ b2K

ℓ“K`1 aiℓ ˆℓPr2Ksztk,K`ku pg
pmqJ

iℓ ,

∆1,3 “

r
ÿ

j1‰j2‰i

1

T

T
ÿ

t“1

fj1,tfj2,t bK
ℓ“1 aj1ℓ b2K

ℓ“K`1 aj2ℓ ˆℓPr2Ksztk,K`ku pg
pmqJ

iℓ .

For any vectors rgiℓ, qgiℓ P Rdℓ , define

∆2,kprgiℓ, qgiℓ, ℓ ‰ kq “
1

T

T
ÿ

t“1

Et b Et ˆK
ℓ“1,ℓ‰k rgJ

iℓ ˆ2K
ℓ“K`1,ℓ‰K`k qgJ

i,ℓ´K P Rdkˆdk ,

∆3,kprgiℓ, ℓ ‰ kq “
1

T

T
ÿ

t“1

fitEt ˆK
ℓ“1,ℓ‰k rgJ

iℓ P Rdk ,

∆4,kprgiℓ, ℓ ‰ kq “
1

T

T
ÿ

t“1

Et b pfjt, j ‰ iqJ ˆK
ℓ“1,ℓ‰k rgJ

iℓ P Rdkˆpr´1q.

As ∆q,kprgiℓ, qgiℓ, ℓ ‰ kq is linear in rgiℓ, qgiℓ, by (61), the numerator on the right hand side of (63) can
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be bounded by

}Ψ ˆℓPr2Ksztk,K`ku pg
pmqJ

iℓ }2

ď}∆1 ˆℓPr2Ksztk,K`ku pg
pmqJ

iℓ }2 ` }∆2,kppg
pmq

iℓ , pg
pmq

iℓ , ℓ ‰ kq}2 ` 2}∆3,kppg
pmq

iℓ , ℓ ‰ kq}2

` 2}Ak}2}∆4,kppg
pmq

iℓ , ℓ ‰ kq}2max
j‰i

K
ź

ℓ‰k

ˇ

ˇ

ˇ
aJ
jℓpg

pmq

iℓ

ˇ

ˇ

ˇ

ď
ÿ

q“1,2,3

}∆1,q}2 ` }∆2,kpgiℓ, giℓ, ℓ ‰ kq}2 ` p2K ´ 2qϕm,k}∆2,k}S

` 2}∆3,kpgiℓ, ℓ ‰ kq}2 ` p4K ´ 4qϕm,k}∆3,k}S

` 2}Ak}2

K
ź

ℓ‰k

`

ψm,ℓ{
a

1 ´ 1{p4rq
˘

}∆4,kpgiℓ, ℓ ‰ kq}2

` 2}Ak}2p2K ´ 2qϕm,k

K
ź

ℓ‰k

`

ψm,ℓ{
a

1 ´ 1{p4rq
˘

}∆4,k}S, (64)

where

}∆2,k}S “ max
}rgiℓ}2“}qgiℓ}2“1,

rgiℓ,qgiℓPRdℓ

}∆2,kprgiℓ, qgiℓ, ℓ ‰ kq}2,

}∆q,k}S “ max
}rgiℓ}2“1,

rgiℓPRdℓ

}∆q,kprgiℓ, ℓ ‰ kq}2, q “ 3, 4.

Note that

∆1,1 “ aik

˜

K
ź

ℓ‰k

aJ
iℓpg

pmq

iℓ

¸

1

T

T
ÿ

t“1

fi,t ¨ pfj2,t, j2 ‰ iq diag

˜

K
ź

ℓ‰k

aJ
j2ℓpg

pmq

iℓ , j2 ‰ i

¸

paj2k, j2 ‰ iqJ.

By (62), in the event Ω1,

}∆1,1}2 À
a

λ1Θii

˜

c

r ` log T

T
`

pr ` log T q1{γ

T

¸

K
ź

ℓ‰k

ψm,ℓ. (65)

Similarly, in the event Ω1,

}∆1,2}2 À
a

λ1Θii

˜

c

r ` log T

T
`

pr ` log T q1{γ

T

¸

K
ź

ℓ‰k

ψm,ℓ, (66)

}∆1,3}2 À λ1

˜

c

r ` log T

T
`

pr ` log T q1{γ

T

¸

K
ź

ℓ‰k

ψ2
m,ℓ. (67)

Let Υ0,i,k “ T´1
řT

t“1 f
2
itaika

J
ik and Υ0,´i,k “ T´1

řT
t“1

řr
j1,j2‰i fj1tfj2taj1ka

J
j2k

. Then, in the event
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Ω1,

}Υ0,i,k}2 ď Θii ` C1Θii

˜

c

r ` log T

T
`

pr ` log T q1{γ

T

¸

:“ ∆Υi — Θii, (68)

}Υ0,´i,k}2 ď λ1 ` C1λ1

˜

c

r ` log T

T
`

pr ` log T q1{γ

T

¸

:“ ∆Υ´i — λ1. (69)

Recall et “ vecpEtq. Similar to the proof of Lemma A.1, we can show, in an event Ω2 with probability
at least 1 ´ T´c2 ´ d´c2 ,

}∆2,k}S ď

›

›

›

›

›

1

T

T
ÿ

t“1

ete
J
t

›

›

›

›

›

2

À

c

d logpdq

T
`
d logpdq

T
` 1,

}∆3,k}S ď

›

›

›

›

›

1

T

T
ÿ

t“1

fite
J
t

›

›

›

›

›

2

À

c

d logpdq

T

a

Θii `
d logpdq

T

a

Θii, (70)

}∆4,k}S ď

›

›

›

›

›

1

T

T
ÿ

t“1

pfjt, j ‰ iqJeJ
t

›

›

›

›

›

2

À

c

d logpdq

T

a

λ1 `
d logpdq

T

a

λ1.

We claim that in certain events Ω3, with probability at least 1 ´ T´c3 ´ d´c3 , for any 1 ď ℓ ď K,
the following bounds hold,

}∆2,kpgiℓ, giℓ, ℓ ‰ kq}2 ď
C1dk logpdq

T
` C1

c

dk logpdq

T
` C1,

}∆3,kpgiℓ, ℓ ‰ kq}2 ď C1

c

dk logpdq

T

a

Θii `
C1dk logpdq

T

a

Θii, (71)

}∆4,kpgiℓ, ℓ ‰ kq}2 ď C1

c

dk logpdq

T

a

λ1 `
C1dk logpdq

T

a

λ1.

Define

Rk,i “

c

dk logpdq

T
`
dk logpdq

T
` 1 `

c

Θiidk logpdq

T
`

?
Θiidk logpdq

T
, R˚ “ max

i
max
k

Rk,i{Θii.

(72)

As giℓ is true and deterministic, it follows from (64), (65), (66), (67), (70), (71), in the event X3
q“0Ωq,

for some numeric constant C2 ą 0

}Ψ ˆℓPr2Ksztk,K`ku pg
pmqJ

iℓ }2

ďC2Rk,i ` C1,KR
p0qϕm,k ` C1,K

a

λ1Θii

ź

ℓ‰k

ψm,ℓ

˜

c

r ` log T

T
`

pr ` log T q1{γ

T

¸

` C1,Kλ1
ź

ℓ‰k

ψ2
m,ℓ

˜

c

r ` log T

T
`

pr ` log T q1{γ

T

¸

` C1,K

c

dk logpdq

T

a

λ1
ź

ℓ‰k

ψm,ℓ, (73)
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where Rp0q “ ϕp0q is defined in (19) in Theorem 4.1. Substituting (73) into (63), by the definition
of ϕm,k, we have, in the event X3

q“0Ωq,

}pa
pm`1q

ik pa
pm`1qJ

ik ´ aika
J
ik}2

ď
4p1 ` δmaxqλ1

ś

ℓ‰k ψ
2
m,ℓ

α2K´2Θiir
a

p1 ´ δmaxqp1 ´ 1{p4rqqαs2K´2
`

4C2Rk,i

α2K´2Θii
`

4C1,KR
p0qϕm,k

α2K´2Θii

`
4C1,K

?
λ1

α2K´2Θii

ź

ℓ‰k

ψm,ℓ

c

dk logpdq

T

`
4C1,K

α2K´2

a

λ1{Θii

ź

ℓ‰k

ψm,ℓ

˜

c

r ` log T

T
`

pr ` log T q1{γ

T

¸

`
4C1,K

α2K´2
pλ1{Θiiq

ź

ℓ‰k

ψ2
m,ℓ

˜

c

r ` log T

T
`

pr ` log T q1{γ

T

¸

ď Cα,KRk,i{Θii ` Cα,Kp
?
rψ0qψm,k ` Cα,K

a

λ1{λr
ź

ℓ‰k

ψm,ℓRk,i{Θii

` Cα,Kpλ1{λrq
ź

ℓ‰k

ψ2
m,ℓ ` Cα,K

a

λ1{λr
ź

ℓ‰k

ψm,ℓ

˜

c

r ` log T

T
`

pr ` log T q1{γ

T

¸

ď Cα,KR
˚ ` ρψm, (74)

where the last inequality comes from condition (23) with ρ ă 1. As R˚ À 1, we have R˚ À ψideal.
Note that as λr À d and the error bound of ψ0 in Theorem 4.1, we have T Á

?
d Á dmax. It follows

that, after Oplogpψ0{ψidealqq iterations,

ψm,i,k À ψideal. (75)

In the end, we divide the rest of the proof into 3 steps to prove (71).

Step 1. We prove (71) for the }∆2,kpgiℓ, giℓ, ℓ ‰ kq}2. Let Pgik “ gJ
iK d ¨ ¨ ¨ d gJ

i,k`1 d Idk d gJ
i,k´1 d

¨ ¨ ¨ d gJ
i1 P Rdkˆd, where d represents Kronecker product. Also let et,ik “ Et ˆK

ℓ‰k giℓ. Then
et,ik “ PgikHξt P Rdk .

By Assumption 4.1 and Lemma A.1 in Shu and Nan (2019), we have

P
`

}et,ik}22 ´ E}et,ik}22 ě x
˘

“ P
`

ξJ
t H

JPJ
gik
PgikHξt ´ EξJ

t H
JPJ

gik
PgikHξt ě x

˘

ď 4 exp

˜

´C 1

ˆ

x

}HJPJ
gik
PgikH}F

˙
1

1`2{ϑ

¸

Note that E}et,ik}22 “ EξJ
t H

JPJ
gik
PgikHξt “ trpHHJPJ

gik
Pgikq — dk, and }HJPJ

gik
PgikH}2F “
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}HHJPJ
gik
Pgik}2F — dk. Choosing x — dk, we have

P
´

}et,ik}2 ě C
a

dk

¯

ď 4 exp

ˆ

´C 1d
ϑ

2ϑ`4

k

˙

.

Let N :“ }et,ike
J
t,ik1t}et,ik}2ďC

?
dku}2 and σ20 :“ }

řT
t“1 Epet,ike

J
t,ik1t}et,ik}2ďC

?
dkuq2}2. Then, by

Assumption 4.1, N ď C2dk and σ20 ď C0Tdk. By matrix Bernstein inequality (see, e.g., Theorem
5.4.1 of Vershynin (2018)),

P

˜›

›

›

›

›

T
ÿ

t“1

”

et,ike
J
t,ik1t}et,ik}2ďC

?
dku ´ Eet,ikeJ

t,ik1t}et,ik}2ďC
?
dku

ı

›

›

›

›

›

2

ě x

¸

ď 2dk exp

ˆ

´
x2{2

σ20 `Nx{3

˙

.

Choosing x —
a

Tdk logpdq ` dk logpdq, with probability at least 1 ´ d´c1 ,

›

›

›

›

›

1

T

T
ÿ

t“1

et,ike
J
t,ik1t}et,ik}2ďC

?
dku ´ Eet,ikeJ

t,ik1t}et,ik}2ďC
?
dku

›

›

›

›

›

2

ď C1

c

dk logpdq

T
` C1 ¨

dk logpdq

T
(76)

Define M :“ t1 ď t ď T : }et,ik}2 ě C
?
dku. Since 1t}et,ik}2ěC

?
dku are independent Bernoulli

random variable and logpT q ď d
ϑ{p2ϑ`4q

k , we have

E|M | “ TP
´

}et,ik}2 ě C
a

dk

¯

ď 4T exp

ˆ

´C 1d
ϑ

2ϑ`4

k

˙

ď T´c2 .

By Chernoff bound for Bernoulli random variables,

Pp|M | ě Cq ď exp p´T c2q .

It follows that

P

˜›

›

›

›

›

T
ÿ

t“1

et,ike
J
t,ik1t}et,ik}2ěC

?
dku

›

›

›

›

›

2

ě x

¸

ď P
´

|M |max
t

}et,ik}22 ě x
¯

ď Pp|M | ě Cq ` P
´

|M | ă C, |M |max
t

}et,ik}22 ě x
¯

ď exp p´T c2q ` P
´

max
t

}et,ik}22 ě x{C
¯

.

Choosing x — dk, we have, with probability at least 1 ´ expp´T c2q ´ T´c2 ,

›

›

›

›

›

1

T

T
ÿ

t“1

et,ike
J
t,ik1t}et,ik}2ěC

?
dku

›

›

›

›

›

2

ď C2 ¨
dk
T
. (77)
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Similarly,

P
´

›

›

›
Eet,ikeJ

t,ik1t}et,ik}2ěC
?
dku

›

›

›

2
ą 0

¯

“ P
´

}et,ik}2 ě C
a

dk

¯

ď 4 exp

ˆ

´C 1d
ϑ

2ϑ`4

k

˙

ď T´c3 . (78)

Combing (76), (77), (78), in an event with probability at least 1 ´ T´c4 ´ d´c1 ,

}∆2,kpgiℓ, giℓ, ℓ ‰ kq}2 ď

›

›

›

›

›

1

T

T
ÿ

t“1

et,ike
J
t,ik ´ Eet,ikeJ

t,ik

›

›

›

›

›

2

` }Eet,ikeJ
t,ik}2

ď

›

›

›

›

›

1

T

T
ÿ

t“1

et,ike
J
t,ik1t}et,ik}2ďC

?
dku ´ Eet,ikeJ

t,ik1t}et,ik}2ďC
?
dku

›

›

›

›

›

2

` }PgikHH
JPJ

gik
}2

`

›

›

›

›

›

1

T

T
ÿ

t“1

et,ike
J
t,ik1t}et,ik}2ěC

?
dku

›

›

›

›

›

2

`

›

›

›
Eet,ikeJ

t,ik1t}et,ik}2ěC
?
dku

›

›

›

2

ď C2

c

dk logpdq

T
` C2 ¨

dk logpdq

T
` C2

Step 2. Now we prove (71) for }∆3,kpgiℓ, ℓ ‰ kq}2. Let

N1 :“
›

›

›
fite

J
t,ik1t}et,ik}2ďC

?
dku

›

›

›

2
,

σ21 :“ max

#›

›

›

›

›

T
ÿ

t“1

Ef2iteJ
t,iket,ik1t}et,ik}2ďC

?
dku

›

›

›

›

›

2

,

›

›

›

›

›

T
ÿ

t“1

Ef2itet,ikeJ
t,ik1t}et,ik}2ďC

?
dku

›

›

›

›

›

2

+

.

It is easy to show

N1 ď C
a

dk }fitai}2 ,

σ21 ď C3Tdk max

#›

›

›

›

›

1

T

T
ÿ

t“1

f2it

›

›

›

›

›

2

,

›

›

›

›

›

1

Tdk

T
ÿ

t“1

f2it

›

›

›

›

›

2

+

:“ σ22.

By matrix Bernstein inequality,

P

˜›

›

›

›

›

T
ÿ

t“1

”

fi,te
J
t,ik1t}et,ik}2ďC

?
dku ´ Efi,teJ

t,ik1t}et,ik}2ďC
?
dku

ı

›

›

›

›

›

2

ě x

¸

ď 2dk exp

ˆ

´
x2{2

σ21 `N1x{3

˙

.

Choosing x —
?
dk logpdq}fit}2 `

a

logpdqσ2, with probability at least 1 ´ d´c4 ,

›

›

›

›

›

1

T

T
ÿ

t“1

fi,te
J
t,ik1t}et,ik}2ďC

?
dku ´ Efi,teJ

t,ik1t}et,ik}2ďC
?
dku

›

›

›

›

›

2

ď C4

a

logpdqσ2 `
?
dk logpdq}fitai}2
T

.

As
?
r logpT q1{γ1 À

?
dk, by Assumption 4.2, with probability at least 1 ´ T´c5 ,

}fit}2 À
?
rplogpT qq1{γ1

a

Θii À
a

dkΘii.
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Similarly, in the event Ω1, σ22 À TdkΘii. Then, with probability at least 1 ´ T´c1{2 ´ T´c5 ´ d´c4 ,

›

›

›

›

›

1

T

T
ÿ

t“1

fi,te
J
t,ik1t}et,ik}2ďC

?
dku ´ Efi,teJ

t,ik1t}et,ik}2ďC
?
dku

›

›

›

›

›

2

ď C5

c

dk logpdq

T

a

Θii ` C5 ¨
dk logpdq

?
Θii

T
.

Similar to (77),

P

˜›

›

›

›

›

T
ÿ

t“1

fi,te
J
t,ik1t}et,ik}2ěC

?
dku

›

›

›

›

›

2

ě x

¸

ď Pp|M | ą Cq ` P
´

|M | ă C, |M |max
t

}fit}2 ¨ }et,ik}2 ě x
¯

.

Choosing x — dk
?
Θii, we have with probability at least 1 ´ expp´T c2q ´ T´c2 ´ T´c5 ,

›

›

›

›

›

1

T

T
ÿ

t“1

fi,te
J
t,ik1t}et,ik}2ěC

?
dku

›

›

›

›

›

2

ď C6 ¨
dk

?
Θii

T
.

Thus, in an event with probability 1 ´ T´c1{2 ´ T´c6 ´ d´c4 ,

}∆3pgiℓ, ℓ ‰ kq}2 ď

›

›

›

›

›

1

T

T
ÿ

t“1

fi,te
J
t,ik1t}et,ik}2ďC

?
dku ´ Efi,teJ

t,ik1t}et,ik}2ďC
?
dku

›

›

›

›

›

2

`

›

›

›

›

›

1

T

T
ÿ

t“1

fi,te
J
t,ik1t}et,ik}2ěC

?
dku

›

›

›

›

›

2

`

›

›

›
Efi,teJ

t,ik1t}et,ik}2ěC
?
dku

›

›

›

2

ďC7

c

dk logpdq

T

a

Θii ` C7 ¨
dk logpdq

?
Θii

T
.

Step 3. Inequality (71) for }∆4,kpgiℓ, ℓ ‰ kq}2 follow from the same argument as the above step.

Proof of Theorem 4.3. By the definition of the iterative algorithm, after convergence to a sta-
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tionary point, paik is the top eigenvector of the matrix

pΣik “ pΣ ˆℓPr2Ksztk,K`ku pgJ
iℓ

“rλi,iaika
J
ik `

1

T

T
ÿ

t“1

fit

˜

K
ź

ℓ‰k

aJ
iℓpg

pmqJ

iℓ

¸

aik b
`

Et ˆℓPrKsztku pgJ
iℓ

˘

`
1

T

T
ÿ

t“1

fit

˜

K
ź

ℓ‰k

aJ
iℓpg

pmqJ

iℓ

¸

`

Et ˆℓPrKsztku pgJ
iℓ

˘

b aik `
1

T

T
ÿ

t“1

Et b Et ˆℓPr2Ksztk,K`ku pgJ
iℓ

`

r
ÿ

j‰i

rλj,iajka
J
jk `

r
ÿ

j1‰j2

1

T

T
ÿ

t“1

fj1tfj2t bK
k“1 aj1k b2K

k“K`1 aj2k ˆℓPr2Ksztk,K`ku pgJ
iℓ

`
1

T

T
ÿ

t“1

r
ÿ

j‰i

fjt bK
k“1 ajk b Et ˆℓPr2Ksztk,K`ku pgJ

iℓ `
1

T

T
ÿ

t“1

r
ÿ

j‰i

fjtEt b2K
k“K`1 ajk ˆℓPr2Ksztk,K`ku pgJ

iℓ

:“ rλi,iaika
J
ik ` Ψ1 ` Ψ2 ` Ψ3 ` Ψ4 ` Ψ5 ` Ψ6 ` Ψ7

:“ rλi,iaika
J
ik ` Ψ, (79)

where rλj,i is defined in (58), pgiℓ “ pbiℓ{}pbiℓ}2, and Ψ “
ř7

j“1Ψj .
Let Paik,K “ Idk ´ aika

J
ik “ aik,Ka

J
ik,K. By Theorem 4.2, the final estimates of paik satisfies, in an

event Ω with probability at least 1 ´ T´C ´ d´C ,

}paikpaJ
ik ´ aika

J
ik}2 ď C0ψ

ideal, (80)

where ψideal is defined in (22). Using resolvent based series expansion of projection matrices (e.g.,
Theorem 1 in Xia (2021)), we have the following expansion,

paikpaJ
ik ´ aika

J
ik “

1

rλi,i
Paik,KΨPaik `

1

rλi,i
PaikΨPaik,K

`
1

rλ2i,i
pPaikΨPaik,KΨPaik,K ` Paik,KΨPaikΨPaik,K ` Paik,KΨPaik,KΨPaikq

´
1

rλ2i,i
pPaik,KΨPaikΨPaik ` PaikΨPaik,KΨPaik ` PaikΨPaikΨPaik,Kq

` R3pΨq. (81)

Moreover, }R3pΨq}2 ď C1}Ψ}32{rλ3i,i ď C2pψidealq3 under the event Ω.
Case (i). Let u “ aik. Then

uJ
`

paikpaJ
ik ´ aika

J
ik

˘

u “
`

paJ
ikaik

˘2
´ 1 “ ´

1

rλ2i,i
aJ
ikΨPaik,KΨaik ` aJ

ikR3pΨqaik

“ ´
1

rλ2i,i

`

aJ
ik,KΨaik

˘J `

aJ
ik,KΨaik

˘

` aJ
ikR3pΨqaik.

22



By Theorem 4.2 and (80), in the event Ω, }rλ´1
i,i a

J
ik,KΨaik}2 ď C0ψ

ideal. It follows that, in the event
Ω,

`

paJ
ikaik

˘2
´ 1 ď C3pψidealq2. (82)

From the condition (23) and (74), we have ψideal À ψ2
0, where ψ0 is the error bound for the

initialization. By the proofs of Theorem 4.2, i.e. the derivation of (74), we can show, in the event
Ω,

›

›

›

›

›

1

rλi,i
pΨ4 ` Ψ5 ` Ψ6 ` Ψ7q

›

›

›

›

›

2

ď C4pψidealq2, (83)

›

›

›

›

›

1

rλi,i
Ψ3

›

›

›

›

›

2

ď C4p
?
rψ0qψideal ` C4

1

Θii

˜

dk logpdq

T
`

c

dk logpdq

T
` 1

¸

, (84)

›

›

›

›

›

1

rλi,i
Ψ1 ´

1

Θii
ś

ℓ‰kpaJ
iℓgilqT

T
ÿ

t“1

fitaik b
`

Et ˆℓPrKsztku g
J
iℓ

˘

›

›

›

›

›

2

ď C4pψidealq2 ` C4p
?
rψ0qψideal,

(85)
›

›

›

›

›

1

rλi,i
Ψ2 ´

1

Θii
ś

ℓ‰kpaJ
iℓgilqT

T
ÿ

t“1

fit
`

Et ˆℓPrKsztku g
J
iℓ

˘

b aik

›

›

›

›

›

2

ď C4pψidealq2 ` C4p
?
rψ0qψideal.

(86)

As aJ
ik,KΨ1aik “ 0, in the event Ω,

›

›

›

›

›

1

rλi,i
aik,KΨaik ´

1

Θii
ś

ℓ‰kpaJ
iℓgilq

aJ
ik,K

«

1

T

T
ÿ

t“1

fit
`

Et ˆℓPrKsztku g
J
iℓ

˘

b aik

ff

aik

›

›

›

›

›

2

ďC4pψidealq2 ` C4p
?
rψ0qψideal ` C4

1

Θii

˜

dk logpdq

T
`

c

dk logpdq

T
` 1

¸

. (87)

Case (ii). Let u K aik. Define v “ uPaik,K. Then

uJ
`

paikpaJ
ik ´ aika

J
ik

˘

aik “ puJ
paikqppaJ

ikaikq

“
1

rλi,i
uJPaik,KΨaik `

1

rλ2i,i

`

uJPaik,KΨPaik,KΨaik ´ uJPaik,KΨPaikΨaik
˘

` R3pΨq

“
1

rλi,i
vJΨaik `

1

rλ2i,i

`

vJΨaik,Ka
J
ik,KΨaik ´ vJΨaika

J
ikΨaik

˘

` R3pΨq.

23



Note that, in the event Ω, }rλ´1
i,i Ψ}2 ď C0ψ

ideal. By (83), (84), (85), (86), we have,

sup
uKaik

ˇ

ˇ

ˇ

ˇ

ˇ

uJ
`

paikpaJ
ik ´ aika

J
ik

˘

aik ´
1

Θii
ś

ℓ‰kpaJ
iℓgilq

uJPaik,K

«

1

T

T
ÿ

t“1

fit
`

Et ˆℓPrKsztku g
J
iℓ

˘

b aik

ff

aik

ˇ

ˇ

ˇ

ˇ

ˇ

ď C4pψidealq2 ` C4p
?
rψ0qψideal ` C4

1

Θii

˜

dk logpdq

T
`

c

dk logpdq

T
` 1

¸

. (88)

Now, let’s move to the proof of Theorem 4.3. Without loss of generality, assume paJ
ikaik ą 0. For

u such that lim infdkÑ8 }Paik,Ku}2 ą 0, we have

uJppaik ´ aikq “ uJPaik,Kpaik ` puJaikqpaJ
ikpaik ´ 1q.

By (82),

ˇ

ˇpuJaikqpaJ
ikpaik ´ 1q

ˇ

ˇ ď C}uJaik}2pψidealq2.

In addition, by (88) and (80),

sup
u

ˇ

ˇ

ˇ

ˇ

ˇ

uJPaik,Kpaik ´
1

Θii
ś

ℓ‰kpaJ
iℓgilq

uJPaik,K

«

1

T

T
ÿ

t“1

fit
`

Et ˆℓPrKsztku g
J
iℓ

˘

b aik

ff

aik

ˇ

ˇ

ˇ

ˇ

ˇ

ďC}Paik,Ku}2

«

pψidealq2 ` p
?
rψ0qψideal `

1

Θii

˜

dk logpdq

T
`

c

dk logpdq

T
` 1

¸ff

.

Combing the bound above, we have

sup
u

ˇ

ˇ

ˇ

ˇ

ˇ

uJppaik ´ aikq ´
1

Θii
ś

ℓ‰kpaJ
iℓgilq

uJPaik,K

«

1

T

T
ÿ

t“1

fit
`

Et ˆℓPrKsztku g
J
iℓ

˘

ffˇ

ˇ

ˇ

ˇ

ˇ

ďC}Paik,Ku}2

«

pψidealq2 ` p
?
rψ0qψideal `

1

Θii

˜

dk logpdq

T
`

c

dk logpdq

T
` 1

¸ff

` C}uJaik}2pψidealq2.

By (71) and paJ
ikaik ą 0, if

a

dk{T " 1{
?
Θii, i.e. Θii " T {dk, then the leading term in uJppaik ´aikq

is

1

Θii
ś

ℓ‰kpaJ
iℓgilq

uJPaik,K

«

1

T

T
ÿ

t“1

fit
`

Et ˆℓPrKsztku g
J
iℓ

˘

ff

“
1

Θii
uJPaik,K

«

1

T

T
ÿ

t“1

fit
`

Et ˆℓPrKsztku b
J
iℓ

˘

ff

.

Thus, (26) follows from the central limit theorem of the above leading term.
Otherwise, 1{Θii is the leading order term of uJppaik ´ aikq. Then we have (27).

Proof of Theorem 4.4. First, by (82), we have (28). Moreover, by (87) and case (i) in the proof
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of Theorem 4.3, we have
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

paJ
ikaik

˘2
´ 1 ´

1

Θ2
ii

ś

ℓ‰kpaJ
iℓgilq

2

«

1

T

T
ÿ

t“1

fit
`

Et ˆℓPrKsztku g
J
iℓ

˘

ffJ

Paik,K

«

1

T

T
ÿ

t“1

fit
`

Et ˆℓPrKsztku g
J
iℓ

˘

ff

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C4pψidealq3 ` C4p
?
rψ0qpψidealq2 ` C4

1

Θ2
ii

˜

dk logpdq

T
`

c

dk logpdq

T
` 1

¸2

.

Then (29) and (30) can be derived by applying similar arguments in the proof of Theorem 4.3.

Proof of Theorem 4.5. The proof of the consistency of pruer draws on methods similar to those in
Ahn and Horenstein (2013) and Han et al. (2022b), given that our CP tensor factor model can be
equated to a vector factor model. Moreover, the consistency of prip aligns with the proofs in Han et al.
(2022b), as our CP tensor factor model can also be regarded as a Tucker factor model with a uniform
Tucker rank of pr, ..., rq. Specifically, lemmas akin to Lemmas 11 and 12 (or Lemmas 14 and 15) in
Han et al. (2022b) can be derived under our assumptions. It leads to Ppprk “ r, 1 ď k ď Kq Ñ 1. We
omit the detailed proofs as they are laborious, albeit straightforward, adaptations for a specialized
case of the Tucker factor model.

Appendix B Techinical Lemmas

Lemma B.1. Let A P Rd1ˆr and B P Rd2ˆr with }AJA´ Ir}2 _ }BJB ´ Ir}2 ď δ and d1 ^ d2 ě r.
Let A “ rU1

rD1
rUJ
2 be the SVD of A, U “ rU1

rUJ
2 , B “ rV1 rD2

rV J
2 the SVD of B, and V “ rV1 rV J

2 .
Then, }AΛAJ ´ UΛUJ}2 ď δ}Λ}2 for all nonnegative-definite matrices Λ in Rrˆr, and }AQBJ ´

UQV J}2 ď
?
2δ}Q}2 for all r ˆ r matrices Q.

Lemma B.2. Let M P Rd1ˆd2 be a matrix with }M}F “ 1 and a and b be unit vectors respectively
in Rd1 and Rd2. Let pa be the top left singular vector of M . Then,

`

}papaJ ´ aaJ}22

˘

^ p1{2q ď }vecpMqvecpMqJ ´ vecpabJqvecpabJqJ}22. (89)

Lemmas B.1 and B.2 are Propositions 5 and 3 in Han and Zhang (2023), respectively.
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Appendix C More Simulation Results

In this section we show the simulation results of Configuration I, II and III with AR coefficient on
git, ϕ, equal to 0.5. We can see that AC-ISO algorithm has a better performance since the signal
strength in the auto-covariance grow with ϕ. CC-ISO algorithm, however, outperforms AC-ISO
algorithm even with stronger serial correlation in the factor process.

Figure 11: Boxplots of estimation errors over 500 replications under Configuration I with ϕ “ 0.5
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Figure 12: Boxplots of the estimation error over 500 replications under configuration II with ϕ “ 0.5.
Note: The first panel shows the ratio of the estimation error of CC-ISO on AC-ISO. The second
panel shows the ratio of the estimation error of CC-ISO on TPCA.
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Figure 13: Boxplots of estimation errors over 500 replications under Configuration III with ϕ “ 0.5
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