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1 Introduction

Asset price bubbles are characterized by three elements: a deviation from an asset’s
fundamental value, extended price run-ups, and an eventual crash (Blanchard, 1979;
Diba and Grossman, 1988; Jarrow et al., 2010; Brunnermeier and Oehmke, 2013; Fama,
2014; Shiller, 2016; Greenwood et al., 2019). Empirically identifying asset price bubbles
is challenging because the traditional methodology requires an explicit estimation of
the asset’s fundamental value. The identification requires postulating and estimating a
stochastic process for the asset’s cash flows, risk premium, default-free interest rates, and
liquidation value. In the literature, there is substantial disagreement on the estimation
techniques. As a consequence, given the resulting controversy, it is widely believed that
one cannot empirically test for the existence of price bubbles.

The purpose of this paper is to show that this common belief is false, and that one can
easily test for the existence of price bubbles by using a new methodology that side-steps
these difficulties in estimating an asset’s fundamental value. This methodology is based
on the local martingale theory of bubbles. Therein, a bubble can be identified solely by
studying the characteristics of the market price process itself under mild assumptions. If
the asset’s volatility increases sufficiently fast with the level of the asset’s price, then this
is a necessary and sufficient condition for the existence of a price bubble.1 The asset’s
volatility is easily estimated, and this necessary and sufficient condition is empirically
tested. We apply this methodology to the current U.S. equity market to determine if it
is experiencing a price bubble. A question of considerable current interest.

This paper also makes a second contribution to the literature. We refine and extend
the statistical methodology contained in Choi and Jarrow (2022) for testing asset price
bubbles. The existing methodology has seven limitations. The first is that this methodol-
ogy needs to be extended to include cash flows, including convenience yields generated
by stock lending fees. Second, the diffusion price process needs to allow the existence of
jumps, due to discrete and significant information events. Third, the existing variance
estimator needs to be augmented to include non-equal price observation times and
price level intervals.2 Fourth, although the existing volatility estimator is consistent, it
is biased for small sample sizes. Fifth, the hypothesis testing procedure is conservative,
being based on upper and lower bounds for the “true” volatility function, which results
in regions where there are inconclusive results with respect to the existence of price
bubbles. Sixth, the robustness procedure does not include information from the esti-
mated volatility’s sampling distribution. And finally, the standard errors in a regression
estimating the upper and lower bounds for the volatility functions are not adjusted for
probable heteroskedasticity and autocorrelation.

1This theory is reviewed in Section 2 below.
2The detailed reasons for this and subsequent statements are given below in section 3.
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This paper addresses these seven limitations. First, we include cash flows. Second,
we allow for jumps in the price process. Third, we extend the methodology to include
non-equal time and price intervals. Fourth, we create and implement a small sample
bias adjustment. Fifth, if the hypothesis testing approach yields an inconclusive re-
sult, we employ Bayesian statistics to provide a posterior probability of the asset price
exhibiting a bubble. Sixth, we develop a robustness check based on the volatility’s
sampling distribution. And finally, in the volatility function’s upper and lower bound
estimations, we adjust the regression estimates’ standard errors for heteroskedasticity
and autocorrelation.

To validate the bubble testing methodology, we simulate two hypothetical markets,
one with the asset price exhibiting a bubble and one without. We simulate 10,000 paths
for the risky asset’s prices over 3 years in both markets, and apply our bubble testing
methodology to see if it correctly identifies the bubble and no-bubble markets. The
simulation validates the methodology. For the no-bubble market, using a hypothesis
test at the 95% significance level, only 4% of the simulated paths are misclassified as
bubbles. For the bubble market, using a conservative hypothesis test, 71% are initially
classified correctly as bubbles. For those simulated paths in the bubble market that are
inconclusive for this hypothesis test, approximately 41% exhibit a posterior probability
of a bubble of more than 90%. The remaining simulated paths remain inconclusive,
with the exception that 39% exhibit a posterior probability of a bubble of less than 10%.
This is to be expected given the hypothesis testing is conservative, and there is error in
the price process’s path due to simulating a continuous stochastic differential equation
with a discretized Euler scheme.

We apply this refined bubble detection technology to the U.S. equity market from
March 2023 to March 2024 using daily price data to see if the current bull market is a
price bubble. We present four main findings. The S&P 500, Dow Jones, and Nasdaq
do not exhibit bubbles. Various robustness checks are performed on the estimation
technique that confirm the validity of these conclusions.

Second, we provide various case studies to provide anecdotal, but confirmatory
evidence, that themethod does correctly identify bubbles. We select three stocks that are
often alleged to contain bubbles (Bitcoin, Meta, NVIDIA) and three stocks that are not
(JP Morgan, Bank of America, Wells Fargo).3 When we apply our methodology to these
securities, Bitcoin and NVIDIA have price bubbles while Meta’s result is inconclusive.
For the banks, JP Morgan, Wells Fargo have no bubbles, but Bank of America does.

Third, we test our methodology on a recent event with respect to Lyft. After the
closing bell on February 13th 2024, Lyft announced an erroneous earnings projection

3Although Bitcoin is not a stock, Bitcoin is a cryptocurrency widely documented to have periodic
price bubbles (Chaim and Laurini, 2019; Choi and Jarrow, 2022). Therefore, we include it in the set of
alleged-bubble stocks.
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that stated a 500 basis point margin instead of a 50 basis point margin. Although the
CEO corrected this mistake in less than an hour, the firm’s stock surged at least 67%
higher based on the incorrect earnings release.4 Intuitively, if Lyft did not undergo
a fundamental change between February 13th and February 14th , this phenomenon
reflects a price bubble. We apply our methodology to two time periods: March 1st 2023
to February 13th 2024 (pre-announcement) and February 16th 2024 to August 27th 204
(post-correction). We show that Lyft did not exhibit a bubble before the announcement.

Finally, we quantify the duration of a bubble’s life in the case of Lyft. By extending
ourmodel to a dynamicmarket environment (Jarrow et al., 2022), we are able tomeasure
the time it takes for the Lyft’s bubble to dissipate after its CEO corrected the earnings
error news. We show that Lyft exhibits a bubble the first month after the informational
correction. However, we find that the bubble subsides significantly after 2.5 months.
Our findings document that it completely collapses within 4 to 5 months.

Our paper is related to two literatures. First, it relates to an econometric literature
testing for price bubbles (Jarrow et al., 2011a,b; Shiryaev et al., 2016; Phillips et al., 2015;
Phillips and Shi, 2020; Jarrow and Kwok, 2021; Choi and Jarrow, 2022). Similar to our
paper, these studies primarily focus on estimating the explosive feature of price bubbles
(e.g., the Feller test, augmented Dickey-Fuller test). Our method differs from those
using the local martingale theory of bubbles in our extrapolation procedure. Our paper
also relates to the statistical literature detecting and adjusting for outliers (Grubbs, 1969;
Rocke and Woodruff, 1996; Aguinis et al., 2013). Our methodology uses the convex hull
of volatility estimates to conservatively approximate the minimum and maximum area
under the extrapolated volatility function. As such, it is potentially vulnerable to large
and small volatility estimates. We provide a new technique for modifying these outliers
based on the sampling distribution to check for this possibility.

This paper is organized as follows. Section 2 provides a summary of the local
martingale theory of bubble. Section 3 juxtaposes the existing and new methodologies.
Section 4 documents the simulation results, and Section 5 presents the empirical results.
Section 6 provides robustness tests, and Section 7 concludes.

2 The Local Martingale Theory of Bubbles

This section briefly reviews the local martingale theory of bubbles. For a detailed
presentation (Jarrow, 2018), chapter 3. The local martingale theory of bubbles is based
on a continuous time, continuous trading, frictionless and competitive market model
over a finite horizon [0, T ]. Traded are a default-free money market account (mma) and
risky assets. Without loss of generality, we assume that there is only one risky asset

4Rana, Preetika. ”Lyft Shares Surge as Strong Earnings Report Offsets Typo Confusion”, The Wall
Street Journal, 14 February, 2024.
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traded.
Denote the time t market price of the risky asset by Ŝt, and assume that it is always

non-negative. Let Gt denote the asset’s cumulative cash flow at time t, starting with
G0 = 0. The cumulative cash flow process is non-decreasing and therefore a finite
variation process. Denote the time t value of the money market account (mma) by

Bt = e
∫ t
0 rsds

where B0 = 1 and rt is the default-free spot rate of interest.
Starting at time 0, the value of a position in the stock plus reinvested cash flows (in

the mma) over [0, t] is

Ŝt +

(∫ t

0

1

Bs

dGs

)
Bt.

We suppose that the market is arbitrage-free (i.e., the market satisfies No Free Lunch
with Vanishing Risk). Hence, by the First Fundamental Theorem of asset pricing, there
exists a risk neutral probability Q, equivalent to the statistical probability P, such that
the normalized asset’s price process plus reinvested cash flows,

Ŝt +
(∫ t

0
1
Bs
dGs

)
Bt

Bt

=
Ŝt

Bt

+

∫ t

0

1

Bs

dGs,

is aQ local-martingale. A local-martingale is a generalization of amartingale. Equivalent
means that Q and P agree on zero probability events.

The market is not assumed to be complete, hence, by the Second Fundamental
Theorem of asset pricing, there could be an infinite number of risk neutral probabilities.
If the market is incomplete, we assume that a unique risk neutral probability Q is
chosen by the market, either via an economic equilibrium or via the asset market being
embedded in a larger market including traded derivatives that is complete.

The asset’s fundamental value at time t, Ft, is defined to be the expected value of the
asset’s liquidation payoff at time T plus all reinvested cash flows over [t, T ], discounted
to the present, i.e.

Ft := EQ
t

(
ŜT

BT

+

∫ T

t

1

Bs

dGs

)
Bt (1)

where EQ
t denotes the conditional expectation at time t using the risk neutral proba-

bilities Q. The use of the risk neutral probabilities Q adjusts for risk in computing this
present value. This is the classical definition of an asset’s fundamental value in the
economics literature.

The asset’s price bubble is defined to be

βt = Ŝt − Ft. (2)
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Note that the stock price Ŝt is after all cash flows have been paid at time t.
Using the definition of the fundamental value, we can rewrite the normalized bub-

ble’s magnitude as

βt

Bt

=

(
Ŝt

Bt

+

∫ t

0

1

Bs

dGs

)
︸ ︷︷ ︸

normalized asset price
+ reinvested cash flows over [0, t]

(A1)

− EQ
t

(
ŜT

BT

+

∫ T

0

1

Bs

dGs

)
︸ ︷︷ ︸

expected normalized liquidation value
+ reinvested cash flows over [t, T ]

(A2)

.

Since (A1) is a Q local-martingale, it is a non-negative Q supermartingale. This implies
that

Ŝt

Bt

+

∫ t

0

1

Bs

dGs ≥ EQ
t

(
ŜT

BT

+

∫ T

0

1

Bs

dGs

)
.

We can further deduce that the normalized asset’s price bubbles is non-negative, i.e.(
βt

Bt

)
≥ 0. Given the normalized fundamental value (A2) is a Qmartingale, it follows

that a price bubble exists (β > 0) if and only if the asset’s price plus reinvested cash flows
(A1) is not a Qmartingale. In this case, we say that (A1) is a strict Q local martingale.
This key insight provides the theoretical basis of our bubble detection methodology.

Result (Empirical Testing) The statistical methodology for detecting
asset price bubbles over a horizon [0, T ] tests to see if the price process(

Ŝt

Bt
+
∫ t

0
1
Bs
dGs

)
is a strict Q local-martingale (bubble) or a Q martingale

(no bubble).

3 The New Statistical Methodology

This paper provides a new statistical methodology for detecting asset price bubbles,
extending the previous approaches used by (Jarrow et al., 2011a; Obayashi et al., 2017;
Jarrow and Kwok, 2021; Choi and Jarrow, 2022). First, we briefly review its most recent
application to detecting bubbles in cryptocurrencies and foreign currencies by Choi
and Jarrow (2022). Second, we explain our new refinements and contributions to the
bubble detection methodology.

3.1 The Existing Methodology

Choi and Jarrow (2022) study bubbles in assets that do not have cash flows, i.e. Gt ≡ 0.
To simply the notation, let St :=

Ŝ
B
denote the normalized risky asset’s price process.5

5In the estimation below, the stock’s price is divided by the value of a money market account before
performing the estimation methodology.
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And, to simplify the exposition, we will call S the risky asset’s price process, dropping
the qualifier “normalized.”

The statistical methodology assumes that St follows the diffusion process

dSt = µ(St)dt+ σ(St)dWt (3)

where S0 is a constant andWt is a standard Brownian motion withW0 = 1.
There are two key characteristics of this diffusion process that are exploited for the

testing of an asset price bubble. The first is that S is a strictQ local martingale if and only
if S is a strict P local martingale (Jarrow et al., 2022). This implies that we do not need
to estimate or determine the risk neutral probability Qwhen testing for price bubbles.
The second is that the characterization of S being a strict P local martingale depends
solely on the asset’s volatility function, σ(x). This is evidenced by the following result.

The normalized price process S is a strict local martingale under P if and
only if

∫ ∞

ε

x

σ(x)2
dx < ∞ for any ε > 0. (4)

Hence, testing for a price bubble is equivalent to investigating whether the integral in
(4) is finite or not. If the integral converges, there is a bubble. If it diverges, then there
is no bubble. Note that the integral is finite if the variance function increases at a faster
rate than the price implying the bubbles are associated with large return variances at
high price levels.

To estimate the volatility function at the level x, the observation period is partitioned
into the discrete time steps t1 = 0, t2, t3, ..., tn = T where n is the total number of price
observations over the time interval [0, T ]. Then, assuming that the time steps are of
equal length, ti+1 − ti =

1
n
units of a year, the estimator at the level x [expression (5), p.

842, (Jarrow et al., 2011b)] of the variance function is given by

Vn(x) =

∑n
i=1 1{|Sti−x|<hn}n(Sti+1

− Sti)
2∑n

i=1 1{|Sti−x|<hn}
. (5)

where

1{|Sti−x|<hn} =

{
1 if |Sti − x| < hn

0 otherwise

and hn is a constant depending upon the sample size n. Here, the the denominator
counts the number of stock prices observed in the price level interval [x− hn, x+ hn]

and the numerator computes the variance estimator for each time step, (Sti+1
− Sti)

2,
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prorated per year, where Sti is in the interval [x− hn, x+ hn].
This is a consistent estimator with Vn(x) → σ2(x) if: (i) σ is bounded above and

below from zero with three continuous and bounded derivatives, and (ii) nhn → ∞
and nh4

n → 0 as n → ∞. It can be shown (see the appendix) that if nh3
n → 0 as n → ∞,

then for large Nn
x , the sampling distribution of this estimator is approximately

Vn(x) ∼ Φ

(
σ2(x), 2

V 2
n (x)

Nn
x

)
(6)

where Φ(mean, variance) is the normal distribution, and Nn
x :=

∑n
i=1 1{|Sti−x|<hn}

counts the number of observations Sti across i = 1, ..., n in the interval [x− hn, x+ hn].
Note that this is an asymptotic distribution for the estimator as Nn

x → ∞, when hn → 0

and n → ∞.
Next, to test for convergence of the integral (4), the volatility function σ(x) needs

to be estimated over all the asset price levels x ∈ [0,∞). Here, the price level range
is partitioned into equally spaced subintervals [0 = x0, x1, x2, . . . , xK = max{Sti : i =

1, ..., n}] for some K > 0 where xj − xj−1 = 2hn for j = 1, ..., K. Because max{Sti : i =

1, ..., n} is finite, this implies that to check for convergence of the interval, one must
extrapolate the volatility’s behavior from the observed price levels to those that the
asset’s price has not yet reached.

Such extrapolation techniques that deal with infinities are common to finance and
asset pricing empirical methods. Examples include the use of non-parametric methods
for estimating risk neutral martingale measures in option pricing and the extrapolation
methods used to estimate realized variance, both of which assume that the range of
option strikes is the entire positive real line. These variance estimation procedures are
the basis for the popular CBOE VIX index (Bliss and Panigirtzoglou, 2004; Carr and
Madan, 2002), Carr and Madan (2002).

In this application, Choi and Jarrow (2022) developed an extrapolation technique
based on bounding the volatility function using two convex hulls of the estimated volatil-
ities.6 Fix a trading horizon [0, T ]where we observe prices {Sti}i with i ∈ {1, 2, ..., T}.
We estimate volatilities for each price partition {hj}j such that we produce a set of
price-volatility pairs {(Sj, σ(Sj))}j .7 The procedure consists of the following steps.

1. Extrapolation: Select the best power functions σk(x) = αkx
βk to fit both the lower

(k = l) and upper (k = u) convex hulls. By construction σ2
l (x) ≤ σ2(x) ≤ σ2

u(x).
Then, estimate the regression

ln(σk(Sj)) = ln(αk) + βk ln(Sj) + εj (7)

6Jarrow et al. (2011a,b); Chaim and Laurini (2019) extrapolate the volatility function using a Gaussian
kernel and Reproducing Kernel Hilbert Spaces.

7Note the total number of price partitions hn depends on the sample size n.
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with αk ≥ 0 and εj the regression residuals to obtain the estimated regression
coefficients β̂k for k ∈ {u, l}.

2. Evaluation (Point Estimation): Define the integrals Iu :=
∫∞
1

x
σ2
l (x)

dx and Il :=∫∞
1

x
σ2
u(x)

dx. Note the subscripts for the upper and lower integrals have been reversed
from the variance functions, so that

Iu > I > Il

where I in given in expression (4).

(a) First compute the estimate β̂l in order to evaluate the convergence of the
upper bound Iu for the integral I . The upper bound is evaluated using the
lower convex hull’s approximating function σ2

l (x). If the estimated coefficient
β̂l > 1, then this implies the lower convex hull’s integral Iu < ∞ converges
and there is a bubble.

(b) If the estimate β̂l implies the lower convex hull’s integral Iu = ∞ diverges,
then this does not guarantee divergence of I . In this case, use the upper
convex hull to obtain the estimate β̂u to evaluate divergence of the lower
bound Il for the integral I .

(c) If the estimated coefficient β̂u ≤ 1, then this implies that the lower integral
Il = ∞ diverges. Thus, I = ∞ diverges, and there is no bubble.

(d) If the point estimate β̂u implies the lower integral Il < ∞ converges, then
the test is inconclusive. This occurs if β̂u > 1.

3. Evaluation (Hypothesis Testing): The hypothesis test uses the point estimates of β
obtained in the previous section. The following algorithm controls for both Type I
and Type II errors.

(a) Step 1: Test the null hypothesis of no bubble using the point estimate β̂l to
evaluate the upper bound Iu on the true integral at the 0.95 confidence level.
Reject the null if β̂l > 1 + 1.645σ̂l. If rejected, stop. The conclusion is that a
bubble exists. Otherwise due to the fact that this is upper bound and there
is potentially a large Type II error, go to step 2.

(b) Step 2: Test the null hypothesis of a bubble using the point estimate β̂u to
evaluate the lower bound Il on the true integral at the 0.95 confidence level.
Reject the null if β̂u ≤ 1 − 1.645σ̂u. If rejected, stop. The conclusion is that
there is no bubble. Otherwise, go to step 3.

(c) Step 3: Stop. The testing is inconclusive, because step 1 accepts the hypothesis
of no bubble and step 2 accepts the hypothesis of a bubble, both tests having
potentially large Type II errors.

8
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For a robustness check, Choi and Jarrow (2022) winsorize the largest and smallest
volatility estimates by replacing them with the respective second largest and smallest
estimates.

3.2 Limitations

The existing bubble testing methodology has seven limitations in applications. First, the
estimation methodology was constructed for assets with no cash flows. Clearly, this is
violated for many assets of interest. Such cash flows include stock lending fees, which
are convenience yields generated from holding the assets (Jarrow, 2010).

Second, the diffusion process as given in expression (3) does not allow for jumps in
the price process, generated by discrete and significant information events that could
affect the asset’s volatility.

Third, the existing variance estimator has equally spaced time and price level parti-
tions. For time, the partitions are denoted 1

n
, where n is the number of price observations.

Fixing n as the sample size, for an application the observations may be at different time
intervals, e.g. transaction times (which are unequal) or daily (weekends issues). For
this reason, it is important to adjust the variance estimator to handle these different
possibilities. Given the variance estimator is consistent if both hn → 0 and n → ∞, it
must be the case that Nn

x → ∞ for the estimator to have a small sampling standard
error. This process involves a tradeoff between the size and number of price bins we
choose. On the one hand, if the size of the price intervals (i.e., [x− hn, x+ hn]) becomes
too tight (i.e., hn ≈ 0), then each bin will virtually have no prices observed. On the
other hand, if the number of observed prices (i.e., Nn

x ) is too large (i.e., M ≈ ∞), then
the number of partitions will naturally decrease making it challenging to generate a
sufficient pair of price-volatility estimates. Unfortunately, for the asset price partition
[0 = x0, x1, x2, . . . , xK = max{Sti : i = 1, ..., n}] equally spaced at 2hn, the volatility
estimates Vn(x) for x close to zero and x close to max{Sti : i = 1, ..., n} will have the
smallest values forNn

x , and consequently the largest sampling standard errors. These po-
tential large sampling errors could significantly impact the extrapolation methodology
employed.

Fourth, since it is an consistent estimator, it is likely that the estimate is biased for
small sample sizes. And, the smaller the sample size Nn

x in any price level interval
[x− hn, x+ hn], potentially the larger the bias. As with the first limitation, this is likely
to impact the the volatility estimates Sn(x) for x close to zero and x close tomax{Sti :

i = 1, ..., n}, due to the smaller values for Nn
x .

The intuition for this bias can be explained as follows. If Eti(Sti+1
) > Sti (typical

for stocks that require a risk premium) and σ2(x) is increasing in x (necessary for
a price bubble), then the estimator will be biased upward. The bias stems from the

9
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fact that 1{|Sti−x|<hn} uses the points Sti ∈ [x − hn, x + hn] close to x to estimate the
variance σ2(x) for the single point {x}. It does this by estimating the variance for a point
Sti in a neighborhood of x, σ2(Sti). On average σ2(Sti) will be close to σ2(x) because
Sti ∈ [x−hn, x+hn]; sometimes above, sometimes below x. But, the estimator computes
the sample variance by using the next observation Sti+1

as well, for which σ2(Sti+1
) will

be larger than σ2(Sti) if Eti(Sti+1
) > Sti and σ2(x) is increasing. Intuitively, using both

σ2(Sti) and σ2(Sti+1
) to compute the estimator (roughly, their average) will result in an

upward bias in the estimate for σ2(x).
Fifth, the testing method’s reliance on the upper and lower bounds of the convex

hull points renders the testing to be rather conservative. Consequently, there exist
inconclusive regions where one cannot assert the presence of price bubbles. This is
problematic in practice where one wants to know if an asset price exhibits a bubble. For
this inconclusive region, one would like to compute a point estimate for the probability
that the asset exhibits a bubble.

Sixth, the existing procedure’s choice of replacing the largest and smallest estimated
variances by the second largest and smallest estimates is somewhat arbitrary. If the
second largest and smallest estimates are materially different from the largest and
smallest counter parts, the resulting convex hull might be substantially differently than
that from the initial interpolated points. Utilizing the sample distribution statistic
improves the robustness of the method.

Finally, the regression residuals may exhibit heteroskedasticity or autocorrelation.
Although the estimated price-volatility pairs are cross-sectional data (i.e., an estimate
from the snapshot over a fixed trading period), there is a form of ordering preserved. For
example, when an asset price increases significantly today, it typically remains elevated
for a period of time. The existing method prescribes a convex hull onto this potentially
autocorrelated data, and this ordering can cause the residuals to be correlated with
respect to the asset price level. Also, the true volatility function’s envelopes are only
being approximated by a power function. Homoskedasticity widens our estimate’s
standard errors and autocorrelation produces biased estimates, which affect the existing
method’s hypothesis testing.

3.3 The NewMethodology

There are six extensions to the existing statistical methodology in this paper. First, we
allow the risky asset to have cash flows, including convenience yields generated by stock
lending fees. Second, we allow the diffusion price process to include jumps. Third, we
extend the methodology to allow unequal time and price level partitions. The purpose
of which is to have a minimal sample size Nn

x across price level intervals, so that the
sampling standard errors aremore uniform across price levels, especially for the smallest

10
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and largest partition levels. Fourth, we introduce a small sample size bias adjustment.
Fifth, we develop a point estimate for the probability of a price bubble conditional on
obtaining an inconclusive result in hypothesis testing. Sixth, we provide a collection of
robustness tests, based on the sampling distribution of the variance estimator. Each of
these extensions are discussed next.

3.3.1 Cash Flows

The purpose of this subsection is to show that the introduction of cash flows does not
impact the estimation methodology. With cash flows, the evolution of the risky asset’s
price plus reinvested cash flows

(
St +

∫ t

0
1
Bs
dGs

)
is

dSt +
1

Bt

dGt =

[
µ(St)dt+

1

Bt

dGt

]
+ σ(St)dWt.

As evidenced by this evolution, the volatility of the risky asset price plus reinvested cash
flows is identical to that of the risk asset’s price process. Because the characterization of
a bubble is based on expression (4), which only involves the volatility function σ(x),
and both St and

(
St +

∫ t

0
1
Bs
dGs

)
have the same volatility function, a bubble exists in St

if and only if it exists in
(
St +

∫ t

0
1
Bs
dGs

)
. Hence, we have proven the following result.

Result (Cash Flows) The estimation methodology without cash flows
applies unchanged to the risky assets with cash flows.

We note that these cash flows include the stock lending fees, which are convenience
yields generated from holding the asset (Jarrow, 2010).

3.3.2 Unequal Time Intervals and Price Level Partitions

The existing formula has equal time partitions, denoted 1
n
, where n is the number

of price observations. Fixing n as the sample size, in applications, it is important to
adjust the variance estimator to handle unequal time intervals. In addition, the existing
methodology constructs a price level partitioning with equal price level intervals. As
noted earlier, such a partitioning will have unequal sample sizes Nn

x for different price
levels x. And, the different sample sizes will result in larger standard errors of the
estimates for low sample size intervals. These intervals will impact the shape of the
upper and lower convex hulls of the volatility functions. To make the sample sizes Nn

x

more uniform across x, we allow the price level partitions to be increasing in the price
level x, and we select the size of the intervals to give a lower bound on Nn

x across all x.
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The appendix derives the modified variance estimator, given by

Vn (xj) =

∑n
i=1 1{Sti∈[2

∑j−1
k=1 hk,2

∑j
k=1 hk]}(Sti+1

− Sti)
2 · 1

[ti+1−ti]

Nn
xj

, (8)

where we partition the price axis into m bins in the following fashion. First, fix the size
of the first partition h1 > 0. Then, set hj = θ × j × h1 for j = 1, ...,m where θ ∈ (0, 1).
The partition is

{0, 2h1, 2h1 + 2h2, 2
3∑

k=1

hk, · · · , 2
m∑
k=1

hk}

where m is an even number. This partitioning has the size of the price level interval
increasing as the price level increases. For example, if h1 = 5 and θ = 1

2
, then the

partition points are {0, 10, 17.5, 27.5, · · · , 2
∑m

k=1 hk}. Finally, we choose {h1,m, θ} so
thatmin{Nn

x } is large.

3.3.3 Small Sample Size Bias Adjustment

As explained earlier, if Eti(Sti+1
) > Sti (typical for stocks that require a risk premium)

and σ2(x) is increasing in x (necessary for a price bubble), then the estimator will
be upward biased. The proof of this assertion is contained in the appendix. Using a
linear approximation for the volatility function, the appendix shows that an unbiased
estimator for σ2(x) is

σ̂2(x) =
Vn(x)

1 + 2
x

∑n
i=1

1{|Sti
−x|<hn}(Sti−x)

Nn
x

. (9)

As given, we see that if on average Sti > x, the bias adjustment reduces the estimated
variance. That is, the unadjusted variance estimate is biased upward. And, the smaller
the price level x, the larger is the variance adjustment.

3.3.4 The Probability of a Bubble given an Inconclusive Result

The hypothesis testing method, based on upper and lower bounds for the volatility
function, is conservative. As such, even after all the extensions just discussed, there is a
region where the hypothesis testing is inconclusive. To obtain a point estimate of the
probability of a bubble in the inconclusive region, we take a Bayesian perspective and
view βk for k ∈ {u, l} as random variables.

We assume that the posterior distribution for these random variables is given by
the sampling distributions for the estimates (β̂k) based on the standard errors (σ̂βk

),
obtained from the regression of the upper and lower convex hulls in expression (7).
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Under the assumption, the appendix shows that a point estimate for the probability of
a bubble is

P̂ rob(bubble) = 1−

[
Φ

(
1−β̂l

σ̂2
β̂l

)
+ Φ

(
1−β̂u

σ̂2
β̂u

)]
2

(10)

where Φ(·) is the standard normal cumulative distribution function.

3.3.5 Robustness Tests

The convex hull method developed by Choi and Jarrow (2022) winsorizes the maximum
and minimum estimated volatility points with their second highest and lowest volatility
points, respectively. In the new method, we modify the maximum and minimum
estimated volatility points based on the sampling distribution of the standard error,
given in expression (6) above. The estimate of the variance’s standard error is√

2
V 2
n (x)

Nn
x

=
√
2
Vn(x)√

Nn
x

,

which increases with Vn(x). The robustness test procedure is as follows.

• Replace the maximum value V ∗
n (x) with V ∗

n (x) − κ
√
2V ∗

n (x)√
Nn

x

with κ > 0 a constant,
and

• Replace the minimum value V #
n (x)with V #

n (x) + κ
√
2V #

n (x)√
Nn

x

.

• Given the sampling distribution in the previous section, these κ determine the
probability that the variance exceeds the adjusted variance estimator, i.e.

P

{
σ2(x) > V #

n (x) + κ
√
2
V #
n (x)√
Nn

x

}
= 1− Φ {k}

where Φ is the standard (0, 1) cumulative normal distribution function.

• For various choices of κ (i.e., 0.05,0.10,0.15,0.20), evaluate the bubble test results.

Choosing various levels of κ provides a sensitivity analysis that indicates the impact of
the likelihood of the error in the estimated variance on the hypothesis test for a bubble.

3.3.6 Heteroskedasticity and Autocorrelation

When fitting the linear regression in expression (7) to the volatility function’s lower and
convex hulls, the regression residuals may exhibit heteroskedasticity or autocorrelation.
To address this possibility, we use the Newey-West variance estimator (White, 1980;
Newey and West, 1987) to generate consistent standard errors.
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3.4 Asset Price Jumps

This section extends the previous methodology to a jump-diffusion process.

3.4.1 Theory

The extended asset price process is

dSt = µ(St)dt+ σ(St)dWt + β(t−, St−)dNt (11)

where S0− := S0 > 0 is a constant,Wt is a standard Brownian motion withW0 = 1, Nt

is a point process independent of Wt with N0 = 0 taking values in the set of integers
{0, 1, 2, ...}with a predictable intensity λ(t−, St−)where St− := lim

s→t,s<t
Ss.

We assume that the deterministic functions λ(·, ·), µ(·), σ(·), β(·, ·) are appropriately
measurable and such that a strong solution to this stochastic differential equation exists,
see Björk (2021), p. 62 for a set of sufficient conditions.

Set τ0 = 0, and let τ1, τ2, ... denote the jump times of Nt. Given this notation, we can
rewrite the price process as

dSt = µ(St)dt+ σ(St)dWt (12)

for t ∈ [τi, τi+1)with i = 0, 1, 2, ...,where

Sτi = Sτi− + β(τi−, Sτi−).

The key insight from this alternate expression is that between jump times, the asset
price process follows the previously assumed diffusion process’ stochastic differential
equation.

As before, we assume that the price process satisfies NFLVR implying that Ŝt

Bt
+∫ t

0
1
Bs
dGs is a Q local-martingale. To facilitate estimation, we add the following assump-

tion.
Assumption (Jump Process)We assume that under the change ofmeasureQ, the jump

process [β(t−, St−)dNt − λQ(t−, St−)dt] is a Q-martingale (not a strict local-martingale)
where λQ(t−, St−) denotes the intensity process under the change of measure.

The economic interpretation of this assumption is that asset price bubbles are gener-
ated by the continuous buying/selling by market participants that affects the diffusion
part of the price process, and that the price jumps are generated by news events, inde-
pendent of the trading activity generating the bubble.

Then, under this assumption, we get our key result:
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Result (Empirical Testing) Ŝt

Bt
+
∫ t

0
1
Bs
dGs is a strict Q local-martingale if and only if

the diffusion part is a strict Q local-martingale.
Hence, to test for asset price bubbles we only need to test if the diffusion part of the

price process between jump times is a strict Q local-martingale.

3.4.2 Empirical Testing

Given the previous result, we can apply the same statistical methodology as before
to test for asset price bubbles, but after removing the jump days from the time series
price data. To do this, as before, we partition the observation period into the discrete
time steps t1 = 0, t2, t3, ..., tn = T where n is the total number of price observations over
the time interval [0, T ]. At each date, we observe the stock price Sti for i = 1, ..., n. We
compute absolute price changes over the time intervals.

Using a non-parametric procedure, we define a jump interval to be those days ti for
i = 1, ..., n where the absolute price change is in the top and bottom 5 percent of the
histogram. As a robustness check, we also explore the 3 and 1 percent quantiles as well.
On these days, we assume that the price changes represent the combined result of the
diffusion and the jump process. The key insight here is that on these and only these
days jumps occur. All other days, by assumption, don’t include a realization of the jump
process. Then, we remove these trading days from our sample, and apply the bubble
testing methodology presented previously for the diffusion part of the price process.

4 Simulation

To validate the bubble testing methodology, we construct a hypothetical market, where
the risky asset price follows a constant elasticity of variance (CEV) process under an
equivalent local martingale measure Q, given by

dS(t)

S(t)
= αSβ−1

t dWt (13)

where Wt is a standard Brownian motion, initialized at W0 = 1, with α ≥ 0 and β

constants. Because our testing methodology including jumps only concentrates on the
diffusion part of the price process, this is an appropriate experiment for validating the
empirical methodology.

We fix α = 0.3 per year (typical for a stockmarket index), and construct two different
markets, one with a bubble (β = 1.5) and one without (β = 0.5). Using a Euler scheme,
we discretize the continuous-time evolution as
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S(ti+1) = S(ti) exp

[
−1

2

(
αSβ−1

t

)2
(ti+1 − ti) +

(
αSβ−1

t

)√
ti+1 − tiZi+1

]
(14)

where the time interval corresponds to one day, i.e. (ti+1 − ti) =
1

365
.

We simulate a path for the risky asset’s price over 3 years (1095 days), and then
apply our bubble testing methodology to see if it correctly identifies the bubble and
no-bubble markets. Given the randomness in the simulation itself, we perform this
exercise 10,000 times for each market.

It is well-known (see Chapter 4, Jaeckel (2002) and Chapter 6, Glasserman (2002))
that approximating a continuous time diffusion process using a Euler scheme has an
approximation error that converges to zero as the time intervals uniformly converge
to zero. In our context, this approximation error can be viewed as analogous to the
existence of market micro-structure noise (e.g., bid/ask prices) in actual realized market
prices. Nonetheless, given our small time step, this discretizing of the price process’
path is not large enough to change a simulated bubble market into a no-bubble market
and conversely.8

Figure 1 (Figure 2) consists of four plots. The first two plots present the simulated
price paths and price distribution for β = .5 and β = 1.5. First, we note that price
paths are more disperse with β = 1.5. This visually confirms that the CEV process with
β = 1.5 yields more volatility at higher realized price levels. The middle figure plots
the number of assets that accept and reject the first (second) test’s null hypothesis. The
last figure plots the percentage of assets that fall in each posterior bubble probability
bucket given the results are inconclusive for β = .5 and β = 1.5. When evaluating these
results, recall that our hypothesis testing is conservative, with a 95% significance level.
Consequently, we would expect to see around 5% of the no bubble markets categorized
as bubbles in step 1, and the same for the hypothesis testing of bubble markets in step
2.9

Recall that step 1 tests the null hypothesis of no bubble. For β = .5 (no bubble), only
4% of the simulated paths are misclassified as bubbles. Exactly as expected. For β = 1.5

(bubbles), 71% are classified correctly as bubbles.
Remember, however, that this hypothesis test is based on a lower bound for the

volatility function, so it is conservative, and it will reject fewer no-bubbles than if the
“true” volatility function had been utilized.

8This is not the case, however, with β = 1, which is on the boundary of the no bubble market. In
a simulation, this approximation error could transform the no bubble market into one containing a
bubble. Because the purpose of the simulation is to see if our statistical methods can identify a bubble
in a controlled experiment, the case β = 1 eliminates the control. Consequently, we do not simulate a
hypothetical market with β = 1.

9The step 1 and 2 refer to the Evaluation (hypothesis testing) procedures in Part 3 of the bubble test
algorithm.
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Figure 1. Simulated Paths. The figure graphs the simulated price paths & distributions of
a Constant Elasticity of Variance (CEV) process for β ∈ {.5, 1.5} with 10,000 iterations. The first
two graphs represent test 1 results pertaining to the lower convex hull. The last graph plots the
posterior probability distribution of the CEV process with β = .5 exhibiting a bubble.
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Figure 2. Simulated Paths. The figure graphs the simulated price paths & distributions of
a Constant Elasticity of Variance (CEV) process for β ∈ {.5, 1.5} with 10,000 iterations. The first
two graphs represent test 2 results pertaining to the upper convex hull. The last graph plots the
posterior probability distribution of the CEV process with β = 1.5 exhibiting a bubble.
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For those paths that are not rejected in step 1, considering type II error, step 2 tests
the null hypothesis of a bubble. For the 96% of the simulations (9544 paths) accepting
the null hypothesis of no bubble for β = .5, 85% reject the hypothesis of a bubble in
step 2. This is strong evidence supporting the validity of the testing methodology.
We emphasize that this is a conservative test using the upper bound for the volatility
function at the 95% significance level, so it will reject fewer bubbles than if the “true”
volatility function had been utilized. Next, in step 2, for the 29% of the simulations
(2832 paths) for β = 1.5 that do not reject no-bubble in step 1, only 5.4% reject a the
path as having a bubble. This is what we expect since we are using a 95% significance
level in this hypothesis test.

Finally, for all those paths that result in an inconclusive determination after both
steps 1 and 2, for β = .5, approximately 45% (39%) exhibit a posterior bubble probability
of more than 90% (less than 10%). And, for β = 1.5, approximately 41% (49%) exhibit
a posterior bubble probability of more than 90% (less than 10%). When we add the
additional 950 paths for β = 1.5 that are inconclusive, but with a posterior probability
of a bubble greater than 90%, a combined total of 81% of the 10,000 simulation paths for
β = 1.5 exhibit price bubbles. In conjunction, these simulation results provide strong
evidence in support of the methodology’s ability to identify asset price bubbles.

5 The Empirical Investigation

Our empirical investigation consists of three parts. In the first we examine daily closing
prices of three US major indices (S&P 500, Dow Jones Industrial Average, Nasdaq) to
see if they exhibit price bubbles. In the second, we examine five individual stocks and
one cryptocurrency as case studies to provide confidence that the procedure performs
effectively. Here, we examine three assets that are often alleged as containing bubbles
(Bitcoin, Meta, NVIDIA) and three banks stocks that are not (JP Morgan, Bank of
America, Wells Fargo).

The third looks at a recent jump-day event in Lyft’s stock on February 13th 2024.
On that day, the Lyft stock closed at $12.13. After the closing bell, Lyft announced an
erroneous earnings projection (i.e., an extra zero in the basis point), which resulted in
the immediate price surge of more than 60%. By excluding the jump days (February 14th

& 15th)10, we dichotomize the sample period into two sets, pre-announcement (March
1, 2023 – February 13, 2024) and post-correction (February 15, 2024 – August 27, 2024),
to investigate the presence of bubble in the Lyft stock.

10The Lyft CEO corrected the basis point typo within an hour. However, the Lyft stock price remained
elevated. On February 14th (i.e., jump day), it closed at $16.39, which is 35% higher than the previous
day’s closing price. On the subsequent day (February 15th), it closed at $ 19.03, which is 16.12% higher
than the previous day’s closing price. Hence, we classify and exclude both the 14th and 15th as jump days.
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5.1 Data

We collect the data from the LSEG Data & Analytics’ Workspace platform. The sample
data consists of ten assets: three indices (S&P 500, DJI, Nasdaq), three assets that may
exhibit bubbles (Bitcoin, Meta, NVIDIA), three assets that may not (JP Morgan, Bank
of America, and Wells Fargo), and Lyft. The sample period is from March 1st 2023 to
March 4th 2023 consisting of 264 trading days.11

5.1.1 Normalization

Given our statistical methodology assumes a normalized price process (see Section 3.1),
we use the SecuredOvernight Financing Rate (SOFR) over the sample period to compute
the normalized closing daily asset prices. For the money market account, let the time t
money market account value be Bt where rt is the default-free spot rate (per year). In
symbols, we compute

Bt = e

t−1∑
s=0

rs( 1
365)

,

where the normalized asset price is St

Bt
.

5.1.2 Jump Day Exclusion

As described in Section 3.4.2, we apply a jump day exclusion filter to ensure that our
bubble detection algorithm tests whether the diffusion part of the price process is strict
Q local-martingale. First, we compute the absolute daily changes in the risky asset’s
closing prices. Second, we apply the 95 percentile filter to the distribution of the absolute
daily changes, which reduces our total sample period by two weeks. This benchmark
filter effectively excludes top 5 percentile absolute asset price changes. Finally, for a
robustness check, we perform sensitivity analyses of our baseline results by applying
97-percentile and 99-percentile filters.

11For Lyft, we expand our sample horizon to August 2024 since the analysis requires the pre-
annoucement and post-correction periods’ comparison.
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TABLE I. Descriptive Statistics of the Regression Sample

The table presents descriptive statistics of the sample’s ten assets. The sample consists of the daily
closing prices of three major US equity indices and seven stocks over 264 trading days from March 1 2023
to March 4 2024. Bitcoin (BTC) is in 1000 US Dollars. Columns (1)–(10) are based on quoted prices
without the money market account normalization. Columns (1A)–(10A) are based on the normalization
using the Secured Overnight Financing Rate Data (SOFR) over the sample period.

SP500 DJI NASDAQ BTC Meta NVIDIA JPM BoA WellsFargo Lyft

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Mean 4353.28 34276.71 13398.33 0.03 299.64 432.16 147.30 29.37 42.61 11.04
Std. Dev 250.74 1575.07 1060.23 0.01 67.69 122.37 13.04 2.24 3.85 1.95

Min 3851.44 31648.80 11127.79 0.01 173.42 226.98 124.63 24.57 36.15 7.93
Max 4949.88 37732.97 15681.86 0.05 484.00 821.19 179.85 34.15 53.77 18.37
N 264 264 264 264 264 264 264 264 264 264

(1A) (2A) (3A) (4A) (5A) (6A) (7A) (8A) (9A) (10A)

Mean 4272.38 33644.55 13146.41 0.03 293.57 423.19 144.52 28.83 41.82 10.83
Std. Dev 207.98 1278.42 919.20 0.01 63.30 115.68 11.44 2.08 3.47 1.82

Min 3847.12 30898.25 11116.70 0.01 173.42 226.98 124.35 23.99 36.07 7.86
Max 4769.50 36384.40 15110.39 0.05 466.36 791.15 173.27 34.14 51.80 17.72
N 264.00 264.00 264.00 264.00 264.00 264.00 264.00 264.00 264.00 264.00

Figure 3. Historical Price of S&P 500 fromMarch 1 2023 to March 4 2024. This figure
plots the quoted price (raw) and normalized price (by the money market account) of S&P 500.

Table I provides descriptive statistics of the ten assets’ quoted (raw) and normalized
prices. Figure 3 plots a juxtaposition of the S&P 500 paths for normalized (red) and
raw (black) historical prices from March 1 2023 to March 4 2024. The price process
normalized by the cost of borrowing cash overnight (collateralized by Treasury) trends
lower as the cost has risen from 4.5% to 5.38% during the sample period.
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5.2 The Baseline Model

The baseline model is described in Section 3.1. Given are risky asset price observations
{Sti}i over a fixed horizon, i ∈ {1, 2, ..., T}, from which we generate a set of price and
estimated volatility pairs {(Sj, σ(Sj))}j where j corresponds to the jth bin of a price
interval.12 For these price-volatility pairs, we generate upper and lower convex hulls.
For each convex hull, we fit the best power functions σk(x) = αkx

βk where k = l and
k = u correspond to the lower and upper convex hull, respectively. We perform the
ordinary least squares regression:

ln(σk(Sj)) = ln(αk) + βk ln(Sj) + εj. (15)

First, we evaluate whether β̂l exceeds 1+1.645σ̂l. If β̂l exceeds this threshold, then
we reject the null hypothesis (no bubble) and conclude that the asset has a bubble.
Otherwise, we evaluate whether β̂u is less than 1-1.645σ̂u. If β̂u is less then this threshold,
we reject the null hypothesis (bubble) and conclude the asset does not have a price
bubble. If both null hypotheses are accepted, our hypothesis testing is inconclusive. In
this last case, we compute the posterior probability of a bubble given an inconclusive
result.

5.3 The Results

This section provides the results for all assets selected for investigation.

5.3.1 The Baseline Model

We apply the methodology to three major U.S. equity indices: the S&P 500, the Dow
Jones Industrial Average, and the Nasdaq. Table II documents our findings. Columns
(1), (3), and (5) report the coefficient estimates, 95% confidence interval thresholds,
results of the hypothesis tests, and the posterior probability of a bubble for the S&P 500,
Dow Jones, and Nasdaq. The odd columns provide the numbers for the lower convex
hulls and the even columns report the numbers for the upper convex hulls.

For all three indices, we accept the hypothesis of no bubble (test 1). The S&P 500
and NASDAQ accept the null hypothesis of no bubble at the 1% significance level; Dow
Jones accepts the null at 10% level. Since the indices accept the null hypotheses in both
tests, their bubble results are inconclusive. Hence, we apply the posterior probability
calculation developed in this paper. Their posterior probabilities of bubble are negligible.
Hence, we conclude all three indices are unlikely to exhibit a price bubble.

12Recall that for each price interval, we obtain a pair of price and volatility estimate.

22



DRAFT [DO NOT CIRCULATE] Version: September, 2024 © Choi & Jarrow

TABLE II. Baseline Regression Results: Index

The table reports the coefficient estimates of the regression in (15) for the lower (βl) and upper (βu)
convex hulls of three major US equity indices from March 2023 to March 2024 using daily closing prices.
Test 1 evaluates the null hypothesis of no bubble. Test 2 evaluates the null hypothesis of a bubble.
Inconclusive means both tests accept the null hypothesis. In the inconclusive case, the probability of a
bubble is given using a Bayes’ posterior distribution. All standard errors are computed with the
Newey–West adjustment. ∗p <0.1, ∗∗p <0.05, ∗∗∗p <0.01.

US Stock Market

S&P 500 DJI NASDAQ

(1) (2) (3) (4) (5) (6)

β̂l β̂u β̂l β̂u β̂l β̂u

Bubble Coefficient -0.481∗∗∗ 0.714 0.270∗ 0.313 -0.558∗∗∗ 0.654
(0.019) (1.274) (0.140) (1.005) (0.015) (1.067)

95 CI Threshold 1.030 -1.096 1.231 -0.653 1.025 -0.755

(Test 1) H0: No Bubble Accept Accept Accept
(Test 2) H0: Bubble Accept Accept Accept

Result Inconclusive Inconclusive Inconclusive Inconclusive Inconclusive Inconclusive
P (Bubble|Inconclusive) 0% 2.6% 0%

R2 0.991 0.046 0.437 0.02 0.996 0.08
N 250 250 250 250 250 250

5.3.2 The Case Studies

Here, we apply the methodology to two sets of assets: (i) those alleged to have bubbles
and (ii) those alleged to not. The first set consists of Bitcoin, Meta, and NVIDIA, the
second set consists of JP Morgan, Bank of America, and Wells Fargo.

Table III and Table IV document our findings. Bitcoin and NVIDIA accept the null
hypotheses of both tests at the 1% significance level. Their posterior probability of a
bubble is 100% implying both Bitcoin and NVIDIA have bubbles. Meta also accepts both
nulls of test 1 and test 2 at the 5% significance level with a 52% posterior probability of
bubble; the results are inconclusive for Meta.

For the bank stocks, JP Morgan fails to reject the null hypothesis of bubble in test 2 at
the 1% significance level; it has a bubble. Bank of America and Wells Fargo accept both
tests’ null hypotheses. While the posterior probability of bubble for Bank of America is
76%, Wells Fargo’s posterior probability is negligible. Hence, out of three bank stocks,
only Bank of America is likely to have a bubble.

5.4 The Case of Lyft

On February 13th 2024, Lyft issued an earnings projection after the closing bell stating
that its margins would increase by 500 basis points. Less than an hour after the release,
the Lyft CEO corrected the typo and stated the projected estimate is 50 basis points. In
the interim, the company’s stock surged as much as 67% with the subsequent two days’
(February 14th, 15th) closing price changes reaching 35% and 16% respectively compared
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TABLE III. Baseline Regression Results: Alleged Bubble Assets

The table reports the coefficient estimates of the regression in (15) for the lower (βl) and upper
(βu) convex hulls of two U.S. stocks and Bitcoin from March 2023 to March 2024 using daily
closing prices. Test 1 evaluates the null hypothesis of no bubble. Test 2 evaluates the null
hypothesis of a bubble. Inconclusive means both tests accept the null hypothesis. In the
inconclusive case, the probability of a bubble is given using a Bayes’ posterior distribution. All
standard errors are computed with the Newey–West adjustment. ∗p <0.1, ∗∗p <0.05, ∗∗∗p <0.01.

Alleged Bubbles

Bitcoin Meta NVIDIA

(1) (2) (3) (4) (5) (6)

β̂l β̂u β̂l β̂u β̂l β̂u

Bubble Estimate 1.832∗∗ 2.226∗∗∗ 0.879∗∗ 0.668∗∗ 1.676∗∗∗ 2.248∗∗∗
(0.694) (0.204) (0.318) (0.224) (0.459) (0.236)

95 CI Threshold 2.142 0.664 1.523 0.631 1.754 0.612

(Test 1) H0: No Bubble Accept Accept Accept
(Test 2) H0: Bubble Accept Accept Accept

Result Inconclusive Inconclusive Inconclusive Inconclusive Inconclusive Inconclusive
P (Bubble|Inconclusive) 100% 52.77% 100%

R2 0.547 0.959 0.552 0.619 0.646 0.945
N 250 250 250 250 250 250

TABLE IV. Baseline Regression Results: Alleged No Bubbles

The table reports the coefficient estimates of the regression in (15) for the lower (βl) and upper
(βu) convex hulls of three U.S. stocks from March 2023 to March 2024 using daily closing prices.
Test 1 evaluates the null hypothesis of no bubble. Test 2 evaluates the null hypothesis of a bubble.
Inconclusive means both tests accept the null hypothesis. In the inconclusive case, the
probability of a bubble is given using a Bayes’ posterior distribution. All standard errors are
computed with the Newey–West adjustment. ∗p <0.1, ∗∗p <0.05, ∗∗∗p <0.01.

Alleged No Bubble Assets

JP Morgan Bank of America Wells Fargo

(1) (2) (3) (4) (5) (6)

β̂l β̂u β̂l β̂u β̂l β̂u

Bubble Estimate -3.109∗∗∗ -3.244∗∗∗ -0.169 1.406∗∗ -0.589∗∗∗ 0.209
(0.436) (0.319) (1.165) (0.888) (0.221) (0.749)

95 CI Threshold 1.717 0.476 2.917 -0.460 1.364 -0.233

(Test 1) H0: No Bubble Accept Accept Accept
(Test 2) H0: Bubble Reject Accept Accept

Result Inconclusive No Bubble Inconclusive Inconclusive Inconclusive Inconclusive
P (Bubble|Inconclusive) NA 76.63% 0.09%

R2 0.893 0.949 0.004 0.351 0.639 0.013
N 250 250 250 250 250 250
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to their previous day closing prices. This Lyft case provides an ideal environment to test
our refined bubble detection technology. Since there is a clear demarcation point in the
timeline when the jump occurs, we hypothesize that the Lyft stock does not experience
a bubble prior to the erroneous announcement.

To apply our statistical methodology to Lyft, we need to extend the local martingale
bubble methodology from a static market, to a dynamic market. As shown in Jarrow
et al. (2010), in a static market with a fixed local martingale measure, a bubble either
exists at the start of the model or it never does. If a bubble exists, there can only be
bubble death. And, when a bubble dies, it cannot be reborn before the model’s horizon.
However, in an incomplete market, Jarrow et al. (2010) show how to extend such a
static market to one where repeated bubble birth and death can occur over the model’s
horizon. This happens due to shifting local martingale measures across time where the
local martingale measures determine the existence of bubbles.

It is well-known (Jarrow et al., 2022), that given our diffusion process in expression
(3), the existence of a strict local martingale is completely determined by the diffusion’s
quadratic variation under the statistical probability P. In our current model setup, we
fix S under P over the model’s horizon, which implies that in our market, shifting local
martingale measures will not generate new bubbles.

To obtain repeated bubble birth and death given our diffusion process, we need to
allow S to change under P. The simplest generalization to obtain such a dynamic market
is to assume that the volatility function σ(·;Yt) follows a Markov switching process
where σ(·;Yt) : R+ → R+ is a fixed function of an appropriately adapted stochastic
process Yt that lies in one of two regimes, i.e. Yt(ω) ∈ {Bubble,No Bubble}. Here, Yt

can be interpreted as a statistic measuring market exuberance. We assume that when
Yt = Bubble, σ(·;Yt) satisfies the bubble condition, andwhen Yt = No Bubble, it does not.
We also assume that the regimes last for a finite and random time interval determined
by the switching process Y .13 Our statistical methodology is able to detect these regime
shifts.

To do this, we perform two regressions. First, we apply the newmethodology to Lyft
stock prices from March 1st 2023 to February 13th 2024, a day before the jump occurs.
Second, we include the post-correction date, which excludes the two subsequent jumps
days of February 14th and 15th.

Table V documents our findings. Both tests cannot reject their null hypotheses
implying the initial result is inconclusive. Since the posterior probability of bubble is
0%, Lyft does not have a bubble prior to the erroneous earnings announcement. In the
post-correction period, test 2 rejects the null hypothesis of bubble at the 10% significance
level. Hence, excluding the jump days, Lyft does not appear to exhibit a bubble in

13For the purposes of our subsequent empirical tests, the details of the switching process Y are not
needed.
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TABLE V. Baseline Regression Results: Lyft

The table reports the coefficient estimates of the regression in (15) for the lower (βl) and upper (βu)
convex hulls of Lyft stock. The test examines two periods: (i) before the erroneous earnings projection
statement date (March 1, 2023 – Feb 13, 2024) and (ii) after the CEO correction date (Feb 16, 2024 – Aug
27, 2024). Test 1 evaluates the null hypothesis of no bubble. Test 2 evaluates the null hypothesis of a
bubble. Inconclusive means both tests accept the null hypothesis. In the inconclusive case, the
probability of a bubble is given using a Bayes’ posterior distribution. All standard errors are computed
with the Newey–West adjustment. ∗p <0.1, ∗∗p <0.05, ∗∗∗p <0.01.

Lyft

Pre-Announcement Post-Correction

March 1, 2023 - Feb 13, 2024 Feb 16, 2024 - Aug 27, 2024

(1) (2) (3) (4)

β̂l β̂u β̂l β̂u

Bubble Estimate 0.354∗∗∗ 0.925 -0.298 -0.442∗
(0.008) (0.641) (0.444) (0.289)

95 CI Threshold 1.014 -0.054 1.731 0.524

(Test 1) H0: No Bubble Accept Accept
(Test 2) H0: Bubble Accept Reject

Result Inconclusive Inconclusive Inconclusive No Bubble
P (Bubble|Inconclusive) 0% NA

R2 0.997 0.224 0.086 0.351
N 237 237 127 127

both periods. The result of no bubble after the jump days could be due to the fact that
the second period includes both bubble and no bubble sub-periods. We examine this
possibility in the next section.

6 Robustness Tests

6.1 Volatility Error Adjustments

We perform a robustness check on the baseline results by applying an error adjustment
to themaximumandminimum estimated volatilities. We investigatewhether our results
are sensitive to changes in these two extreme volatility estimates. In this procedure, we
reduce the largest volatility estimate by κ times the standard error, and we increase the
smallest volatility estimate by κ times the standard error. The larger the κ, the larger the
probability distribution of the estimated volatility that exceeds the adjusted volatility
estimate.

Figure 4 demonstrates the robustness check procedure for κ values .05, .15, .1, and
.2 applied to the lower convex hull of the S&P 500 price-volatility pairs for the sample
period. As the values increase, it visually shows the largest and smallest volatility
estimates are adjusted downward and upward, respectively, based on the standard error

26



DRAFT [DO NOT CIRCULATE] Version: September, 2024 © Choi & Jarrow

Figure 4. Outlier Correction for S&P 500. The figure plots the adjustment of the maximum and
minimum estimated volatilities for κ ∈ {.05, .15, .1, .2}

distribution. Intuitively, if a subject asset exhibits a price bubble, then adjusting the
highest volatility estimate potentially alters the fitted line of the interpolated convex
hull to be less explosive.

We re-estimate the regressions for all the assets after applying the robustness adjust-
ments. Table VI, Table VII, Table VIII, and Table IX document our findings. Column
(1) provides the adjustments we make in κ to treat the outlier points of the convex
hulls. Column (2) provides the probability that the variance is greater than the adjusted
estimator. Columns (4) and (5) provide the test results of the null hypotheses. Column
(6) documents the results. Column (7) provides the posterior probability of a bubble
given an inconclusive result from the hypothesis testing.

These analyses indicate that our main regression results are robust even after adjust-
ing for the outliers. In the baseline results, three indices did not exhibit a bubble. These
results are preserved for all levels of κ. For the assets in the allegedly bubble set, Bitcoin
and NVIDIA continue to exhibit a bubble as seen in the posterior probability results.
Meta’s posterior probability of bubble is approximately 50% for different values of κ,
which is consistent with the results prior to the outlier adjustment. The bank stocks
and Lyft results are also robust to these modifications. These checks document that our
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initial results are robust to adjustments for the largest and smallest volatility estimates.

TABLE VI. Robustness Results: Baseline Index

The table presents an executive summary of the baseline regression results when the maximum and
minimum volatility estimates are adjusted downward and upward respectively based on the standard
error distribution method developed in Section 3.3.5. The adjustment parameter κ take values .05, .1, .15,
and .2. The κ determines the probability that the variance exceeds the adjusted variance estimator
denoted as P (Φ(0, 1) > |κ|). Test 1 evaluates the null hypothesis of no bubble. Test 2 evaluates the null
hypothesis of a bubble. Inconclusive means both tests accept the null hypothesis. In the inconclusive
case, the probability of a bubble is given using a Bayes’ posterior distribution.

(1) (2) (3) (4) (5) (6) (7)

κ P (Φ(0, 1) > |κ|) Asset (Test 1) H0: No Bubble (Test 2) H0: Bubble Result P (Bubble|Inconclusive)

0.05 0.52 SP500 Accept Accept Inconclusive 0.00%
0.05 0.52 DJI Accept Accept Inconclusive 0.49%
0.05 0.52 NASDAQ Accept Accept Inconclusive 0.00%

0.1 0.54 SP500 Accept Accept Inconclusive 0.00%
0.1 0.54 DJI Accept Accept Inconclusive 0.82%
0.1 0.54 NASDAQ Accept Accept Inconclusive 0.00%

0.15 0.56 SP500 Accept Accept Inconclusive 0.00%
0.15 0.56 DJI Accept Accept Inconclusive 1.51%
0.15 0.56 NASDAQ Accept Accept Inconclusive 0.00%

0.2 0.58 SP500 Accept Accept Inconclusive 0.24%
0.2 0.58 DJI Accept Accept Inconclusive 2.14%
0.2 0.58 NASDAQ Accept Accept Inconclusive 0.00%

TABLE VII. Robustness Results: Allegedly Bubble

The table presents an executive summary of the bubbly asset regression results when the maximum and
minimum volatility estimates are adjusted downward and upward respectively based on the standard
error distribution method developed in Section 3.3.5. The adjustment parameter κ take values .05, .1, .15,
and .2. The κ determines the probability that the variance exceeds the adjusted variance estimator
denoted as P (Φ(0, 1) > |κ|). Test 1 evaluates the null hypothesis of no bubble. Test 2 evaluates the null
hypothesis of a bubble. Inconclusive means both tests accept the null hypothesis. In the inconclusive
case, the probability of a bubble is given using a Bayes’ posterior distribution.

(1) (2) (3) (4) (5) (6) (7)

κ P (Φ(0, 1) > |κ|) Asset (Test 1) H0: No Bubble (Test 2) H0: Bubble Result P (Bubble|Inconclusive)

0.05 0.52 BTC Accept Accept Inconclusive 100.00%
0.05 0.52 Meta Accept Accept Inconclusive 51.66%
0.05 0.52 NVIDIA Accept Accept Inconclusive 100.00%

0.1 0.54 BTC Accept Accept Inconclusive 100.00%
0.1 0.54 Meta Accept Accept Inconclusive 50.55%
0.1 0.54 NVIDIA Accept Accept Inconclusive 100.00%

0.15 0.56 BTC Accept Accept Inconclusive 100.00%
0.15 0.56 Meta Accept Accept Inconclusive 49.45%
0.15 0.56 NVIDIA Accept Accept Inconclusive 100.00%

0.2 0.58 BTC Accept Accept Inconclusive 100.00%
0.2 0.58 Meta Accept Accept Inconclusive 48.40%
0.2 0.58 NVIDIA Accept Accept Inconclusive 99.99%
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TABLE VIII. Robustness Results: Allegedly No Bubble

The table presents an executive summary of the non-bubbly asset regression results when the maximum
and minimum volatility estimates are adjusted downward and upward respectively based on the
standard error distribution method developed in Section 3.3.5. The adjustment parameter κ take values
.05, .1, .15, and .2. The κ determines the probability that the variance exceeds the adjusted variance
estimator denoted as P (Φ(0, 1) > |κ|). Test 1 evaluates the null hypothesis of no bubble. Test 2 evaluates
the null hypothesis of a bubble. Inconclusive means both tests accept the null hypothesis. In the
inconclusive case, the probability of a bubble is given using a Bayes’ posterior distribution.

(1) (2) (3) (4) (5) (6) (7)

κ P (Φ(0, 1) > |κ|) Asset (Test 1) H0: No Bubble (Test 2) H0: Bubble Result P (Bubble|Inconclusive)

0.05 0.52 JPM Accept Reject No Bubble NA
0.05 0.52 BoA Accept Accept Inconclusive 76.17%
0.05 0.52 WF Accept Accept Inconclusive .01%

0.1 0.54 JPM Accept Reject No Bubble NA
0.1 0.54 BoA Accept Accept Inconclusive 75.58%
0.1 0.54 WF Accept Accept Inconclusive 0%

0.15 0.56 JPM Accept Reject No Bubble NA
0.15 0.56 BoA Accept Accept Inconclusive 74.82%
0.15 0.56 WF Accept Accept Inconclusive 0%

0.2 0.58 JPM Accept Reject No Bubble NA
0.2 0.58 BoA Accept Accept Inconclusive 73.85%
0.2 0.58 WF Accept Accept Inconclusivee 0%

TABLE IX. Robustness Results: Lyft

The table presents an executive summary of the Lyft regression results (post- and pre-announcement)
when the maximum and minimum volatility estimates are adjusted downward and upward respectively
based on the standard error distribution method developed in Section 3.3.5. The adjustment parameter κ
take values .05, .1, .15, and .2. The κ determines the probability that the variance exceeds the adjusted
variance estimator denoted as P (Φ(0, 1) > |κ|). Test 1 evaluates the null hypothesis of no bubble. Test 2
evaluates the null hypothesis of a bubble. Inconclusive means both tests accept the null hypothesis. In
the inconclusive case, the probability of a bubble is given using a Bayes’ posterior distribution.

(1) (2) (3) (4) (5) (6) (7)

Period κ P (Φ(0, 1) > |κ|) (Test 1) H0: No Bubble (Test 2) H0: Bubble Result P (Bubble|Inconclusive)

Pre-announcement

0.05 0.52 Accept Accept Inconclusive 0.00%
0.1 0.54 Accept Accept Inconclusive 0.00%
0.15 0.56 Accept Accept Inconclusive 0.00%
0.2 0.58 Accept Accept Inconclusive 0.00%

Post-Correction

0.05 0.52 Accept Reject No Bubble NA
0.1 0.54 Accept Reject No Bubble NA
0.15 0.56 Accept Reject No Bubble NA
0.2 0.58 Accept Reject No Bubble NA

6.2 Bubble Birth and Death

As discussed above, by extending our model to a dynamic market, we can identify
bubble birth and death using our statistical methodology. The Lyft case is ideal to
test for shifting bubble regimes for several reasons. First, the error in Lyft’s earnings
projection was immediately corrected. It implies that the Lyft’s news did not affect its
fundamentals in any meaningful way; any significant deviation in prices is likely to be a
bubble. Second, as traders update their beliefs based on the Lyft CEO’s correction, we
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TABLE X. Rolling-Window Results: Lyft

The table reports the coefficient estimates of the regression in (15) for the lower (βl) and upper (βu)
convex hulls of Lyft on a rolling window of two weeks (1-2), a month (3-4), 2.5 months (5-6), 4.5 months
(7-8), 6.5 months (9-10) after its CEO corrected the earnings projection error. Test 1 evaluates the null
hypothesis of no bubble. Test 2 evaluates the null hypothesis of a bubble. Inconclusive means both tests
accept the null hypothesis. In the inconclusive case, the probability of a bubble is given using a Bayes’
posterior distribution. All standard errors are computed with the Newey–West adjustment. ∗p <0.1,
∗∗p <0.05, ∗∗∗p <0.01.

Lyft

Post-Correction (2 Weeks) Post-Correction (1 Month)

Feb 16, 2023 - Feb 29, 2024 Feb 16, 2023 - March 15, 2024

(1) (2) (3) (4)

Bubble Estimate 12.413 8.816 4.068 2.018
(2.231) (1.576) (3.329) (2.963)

95 CI Threshold 4.671 -1.592 6.475 -3.873

(Test 1) H0: No Bubble Reject Accept
(Test 2) H0: Bubble Accept Accept

Result Bubble NA Inconclusive Inconclusive
P (Bubble|Inconclusive) NA 94.87%

R2 0.755 0.875 0.224 0.094
N 8 8 18 18

Post-Correction (2.5 Month) Post-Correction (4.5 Month)

Feb 16, 2023 - Apr 30, 2024 Feb 16, 2023 - June 28, 2024

(5) (6) (7) (8)

Bubble Estimate 0.222 0.260 0.914∗∗∗ 0.650
(0.241) (1.185) (0.002) (0.776)

95 CI Threshold 1.397 -0.949 1.003 -0.276

(Test 1) H0: No Bubble Accept Accept
(Test 2) H0: Bubble Accept Accept

Result Inconclusive Inconclusive Inconclusive Inconclusive
P (Bubble|Inconclusive) 17.81% 0%

R2 0.135 0.009 .999 0.118
N 49 49 88 88

Post-Correction (4.5 Month)

Feb 16, 2023 - Aug 27, 2024

(9) (10)

Bubble Estimate -0.298 -0.442∗
(0.444) (0.289)

95 CI Threshold 1.731 0.524

(Test 1) H0: No Bubble Accept
(Test 2) H0: Bubble Reject

Result Inconclusive No Bubble
P (Bubble|Inconclusive) NA

R2 0.086 0.351
N 127 127

hypothesize that Lyft’s stock price will eventually result in the bubble’s death. In
addition, if successful, our statisticalmethodologywill enable us to quantify the duration
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of the bubble’ life.
Table X documents our findings using a rolling window of two weeks, a month,

2.5 months, 4.5 months, and 6.5 months following the CEO’s correction. After two
weeks from the earnings update, it fails to reject the null hypothesis (no bubble) of test
1. Hence, the Lyft stock exhibits a bubble. This result reinforces our intuition that an
erroneous surprise can shift the regime from no bubble to a bubble in a dynamic market.
After a month, it fails to reject the null hypotheses of both tests. However, the posterior
probability of a bubble is 95% implying that the Lyft bubble had not subsided. By the
end of April (2.5 months post-correction), the posterior probability of bubble reduced
significantly to approximately 18%. In the subsequent months of June and August, we
see that the bubble collapsed. The lifetime of this particular Lyft bubble post-correction
was about 3 to 4 months.

6.3 Jump Day Filter Threshold

We apply the 97-percentile and 99-percentile filters to the absolute daily price
changes. Intuitively, removing jump days stemming from more extreme absolute price
changes can stress test our statistical methodology as these price points influence the
high volatility estimates thus the key extrapolation points of the convex hulls.

TABLE XI. 97-percentile & 99-percentile Results

The table reports the summary of the regression results after applying the 97-percentile and
99-percentile filters compared to the benchmark filter of 95 percentile. Columns (1), (2), and (3)
juxtaposes the bubble results based on the 95, 97, and 99 percentile filters respectively.

(1) (2) (3)

Asset 95 Percentile (bench mark) 97 Percentile 99 Percentile

SP500 No Bubble No Bubble No Bubble
DJI P (Bubble|Inconclusive) 0% P (Bubble|Inconclusive) 30% P (Bubble|Inconclusive) 30%
NASDAQ P (Bubble|Inconclusive) 0% P (Bubble|Inconclusive) 0% P (Bubble|Inconclusive) 0%
BTC P (Bubble|Inconclusive) 100% P (Bubble|Inconclusive) 100% P (Bubble|Inconclusive) 100%
Meta P (Bubble|Inconclusive) 50% P (Bubble|Inconclusive) 50% P (Bubble|Inconclusive) 50%
NVIDIA P (Bubble|Inconclusive) 100% P (Bubble|Inconclusive) 100% P (Bubble|Inconclusive) 100%
JPM No Bubble No Bubble No Bubble
BOA P (Bubble|Inconclusive) low-70% P (Bubble|Inconclusive) low-70% P (Bubble|Inconclusive) mid-80%
WF P (Bubble|Inconclusive) 0% P (Bubble|Inconclusive) 0% No Bubble
Lyft No Bubble No Bubble No Bubble

Table XI documents our findings. The results of all assets remain consistent and
robust across different levels of the jump day filters. TheDow Jones and Bank of America
remain to accept both null hypotheses of two tests. Their posterior probabilities of bubble
increase at the higher percentile filters but not in a meaningful or significant way to
alter our conclusions. These results indicate that our statistical methodology survives
the stress of removing extreme price movements and the findings hold robust against
different levels of jump day filters.
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7 Conclusion

In this paper, we provide five refinements to the existing bubble testing methodology
based on the local martingale theory of bubbles. First, we enrich the existing method
to encompass a large class of assets with cash flows. Second, we allow unequal time
intervals and price level partitions to accommodate the reality of transaction times and
trading days being uneven. Third, we identify the upward bias issue of the variance
estimator and rectify the bias by making a small sample size adjustment. Fourth, we
increase our understanding of the inconclusive results by taking a Bayesian view to com-
pute the point estimate for the posterior probability of a bubble given an inconclusive
result. Finally, we address the potential presence of heteroskedasticity and autocorrela-
tion persistent in asset price data and the convex hull approach by implementing the
Newey-West adjustments.

We apply the enhanced econometric procedure to the U.S. equity market. We show
that certain technology stocks and Bitcoin exhibit bubbles. Conversely, we find that the
S&P 500, Dow Jones Industrial, Nasdaq, and certain bank stocks do not. In the case of
Lyft’s earnings error surprise, Lyft exhibits no bubble in the pre-announcement and
6 months into post-correction. Here, we document that the bubble’s duration to be
between 3 to 4 months.

To stress test our new methodology, we simulate a path of a constant elasticity of
variance (CEV) price process in a market with a bubble and another market without a
bubble over three years. In 10,000 simulated paths, we show that only a small fraction
of the no-bubble market is misclassified as bubbles while the converse is true in the
bubble-market. These results provide strong evidence in support of the methodology’s
ability to identify asset price bubbles.

Contrary to the extant literature’s divergent views, the main implication of our paper
is that a consistent test for asset price bubbles is empirically viable and testable based on
the local martingale theory of bubbles. The refinements proposed in this paper can be
enhanced and applied further to more diverse and general asset classes in subsequent
research.
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Tables & Figures

Figure 5. Partitioning Price Intervals as a Function of the Asset Price. The figure
juxtaposes the existing method’s even partitioning (above) against our new methodology’s uneven
partitioning (below) taking unequal trading days and transaction times into account.
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Figure 6. Number of Observed Prices by Un-equispaced Partition Bins. The figure plots
the number of price levels (i.e., price footprint) we observe by the number of implemented partitions.
The green, pink, and black dots correspond to the partitioning of five, 15, and 25 bins of S&P 500 over the
sample period (March 2023 – March 2024).
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A Appendix

A.1 Unequal Time Intervals Between Price Observations
Fixing n as the sample size, the time observations may be at transaction times, daily, or weekly. For
this reason, it is important to adjust the variance estimator accordingly. For arbitrary discrete intervals
[ti, ti−1], the conditional variance is

varti
(
Sti+1 − Sti

)
= σ2(Sti)[ti+1 − ti].

As an approximation, the estimator is:

varti
(
Sti+1 − Sti

)
≈ (Sti+1 − Sti)

2.

Combined, this implies

σ2(Sti) ≈
(Sti+1

− Sti)
2

[ti+1 − ti]
.

With multiple observations in small intervals around x, our estimator becomes

Vn(x) ≈

∑n
i=1 1{|Sti

−x|<hn}(Sti+1
− Sti)

2 · 1
[ti+1−ti]∑n

i=1 1{|Sti
−x|<hn}

(16)

Using daily observations, we have [ti+1 − ti] =
1

365 .

A.2 The Standard Error
The distribution of the estimator is (Theorem 2, p. 843, Jarrow et al. (2011a)):

√
Nn
x

(
Vn(x)

σ2(x)
− 1

)
∼

√
2Φ(0, 1) (17)

whereNn
x =

∑n
i=1 1{|Sti

−x|<hn} counts the number of observations i = 1, ..., n in the interval [x− hn, x+ hn].
Hence,

Vn(x) ∼ Φ

(
σ2(x), 2

σ4(x)

Nn
x

)
.

Replace σ4(x)with S2
n(x), to obtain

Vn(x) ∼ Φ

(
σ2(x), 2

S2
n(x)

Nn
x

)
.

The standard error (sample standard deviation) of Vn(x) is estimated as:√
2
V 2
n (x)

Nn
x

=
√
2
Vn(x)√
Nn
x

.

Note that the standard error increases with Vn(x).

A.3 Robustness Test
This robustness test adjusts the maximum and minimum observed variance estimates, which typically
have the largest standard errors. The procedure is as follows.
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• Replace the maximum value V ∗
n (x)with V ∗

n (x)− κ
√
2
V ∗
n (x)√
Nn

x

with κ > 0 a constant, and

• replace the minimum value V #
n (x)with V #

n (x) + κ
√
2
V #
n (x)√
Nn

x

.

• Given the sampling distribution in the previous section, these κ determine the probability that the
variance exceeds the adjusted variance estimator, i.e.

P

{
σ2(x) > V #

n (x) + κ
√
2
V #
n (x)√
Nn
x

}
= 1− Φ {k}

where Φ is the standard (0, 1) cumulative normal distribution function.

• We try various choices of κ > 0, i.e κ = 0.05, 0.10, 0.15, 0.20.

A.4 Unequal Price Levels
A problem with the large size of the standard error bands is that if hn is small, the number of elements
in {|St − x| < hn}, i.e. Nn

x =
∑n
i=1 1{|Sti

−x|<hn} is small. Our estimator is consistent as hn → 0 and
n→ ∞, implying Nn

x → ∞. In a finite sample, as hn gets smaller, Nn
x gets smaller as well. So, there is a

trade-off with the size of hn and the size of Nn
x .

A.4.1 Equal Price Level Partitions

We give the details of the equal price level partition so that the unequal price level partition case is more
easily understood.

Consider the graph where the x - axis is time and the y - axis is the stock price level. On the x - axis
we have the times t1 = 0, t2, t3, ..., tn = T where n is the total number of price observations over the time
interval [0, T ].

Partition the y - axis in equal units of 2hn where hn is in dollars. Here, the y - axis now has the
partition points at

{0, 2hn, 4hn, 6hn, · · · ,mhn}

wherem is an even number. The partitioned intervals are

{[0, 2hn], [2hn, 4hn], . . . [(j − 1)hn, jhn], . . . , [(m− 2)hn,mhn]} .

The midpoint of these intervals are the stock price levels

{x2 = hn, x4 = 3hn, ..., xm = (m− 1)hn}

used in the variance estimators. For example, x2 = hn ∈ [0, 2hn]. Note to keep the notation simple, we
index the stock price levels j = 2, 4, ...,m with the same index as the upper value of the partitions on the
y - axis.

For ti, i = 1, ..., n − 1 compute the estimate of the sample variance using (Sti+1 − Sti)
2. Note that

this looks forward to the next time period to compute the value.
Consider the stock price level xj . Compute the sample variance as

Vn(xj) =

∑n
i=1 1{|Sti

−xj|<hn}(Sti+1 − Sti)
2 · 1

[ti+1−ti]∑n
i=1 1{|Sti

−xj|<hn}
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=

∑n
i=1 1{Sti

∈[(j−1)hn,jhn]}(Sti+1 − Sti)
2 · 1

[ti+1−ti]∑n
i=1 1{Sti

∈[(j−1)hn,jhn]}

=

∑n
i=1 1{Sti

∈[(j−1)hn,jhn]}(Sti+1
− Sti)

2 · 1
[ti+1−ti]

Nn
xj

(18)

Note that the numerator is the sum of the (Sti+1
− Sti)

2 · 1
[ti+1−ti] for those times ti where the stock

price is in the jth partition of the y - axis, i.e, Sti ∈ [(j − 1)hn, jhn]. The denominator is the sum of the
times where the stock price is in the jth partition of the y - axis, i.e. Sti ∈ [(j − 1)hn, jhn].

The choice of “hn” should be done so that Nn
xj

is a large number for most xj for j = 2, 4, ...,m. We
want Nn

xj
large so that the sampling distribution is approximately correct, i.e. near the asymptotic result.

A.4.2 Increasing hn in Stock Price Level

Because the variance Vn(xj) is increasing in xj , we can make hn = hn(x) increasing in x. To keep the
notation simple, we will drop the n subscript in the notation for the partition.

We partition the price axis intom bins in the following fashion. First, set the size of the first partition
h1 > 0. Then, set hj = θ × j × h1 for j = 1, ...,m where θ ∈ (0, 1). The partition is

{0, 2h1, 2h1 + 2h2, 2

3∑
k=1

hk, · · · , 2
m∑
k=1

hk}

wherem is an even number. The price level intervals are{
[0, 2h1] , [2h1, 2h1 + 2h2] , · · · ,

[
2

m−1∑
k=1

hk, 2

m∑
k=1

hk

]}
.

In the variance estimator, xj is the midpoint of the jth interval
[
2
∑j−1
k=1 hk, 2

∑j
k=1 hk

]
, computed as

xj =
2
∑j−1
k=1 hk + 2

∑j
k=1 hk

2
= 2

(j−1)∑
k=1

hk + hj .

The variance estimator is

Vn (xj) =

∑n
i=1 1{Sti

∈[2
∑j−1

k=1 hk,2
∑j

k=1 hk]}(Sti+1 − Sti)
2 · 1

[ti+1−ti]

Nn
xj

. (19)

We note that the estimator will still be consistent as long as for each price level partition k, nhk → ∞ and
nh4k → 0 as n→ ∞ as required by the hypothesis of the theorem.

A.5 Small Sample Size Bias Adjustment
Our variance estimator is consistent, but may contain a small sample bias. To obtain a correction for any
small sample bias, we add the following assumption.

Assumption: (Linear approximation)

σ(x) ≈ ϕ+ ηx
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for constants ϕ, η. These do not need to be positive, the result does not depend on the sign of these
constants. In addition, we require σ(x) → 0 as x→ 0, which implies ϕ = 0, i.e.

σ(x) ≈ ηx.

(Conservative Assumption)
This is a conservative assumption because we are assuming that as an approximation, the process is

geometric Brownian motion, which has no bubbles. This implies the assumed volatility function increases
in xmore slowly than that needed for the existence of an asset price bubble. This ends the remark.

We now prove under this assumption that our variance estimator is biased, and we derive a small
sample bias adjustment.

Proof. Under the linear approximation assumption,

d
(
σ2(x)

)
dx

= 2η2x = 2
σ2(x)

x
.

Hence,

σ2(Sti) = σ2(x) +
d
(
σ2(x)

)
dx

(Sti − x) + ε

≈ σ2(x) +
2σ2(x)

x
(Sti − x) .

To see the bias, we first replace σ2(Sti) in this expression with our estimator for a single observation,
(Sti+1

−Sti
)2

ti+1−ti . This gives
(Sti+1

− Sti)
2

ti+1 − ti
≈ σ2(x) +

2σ2(x)

x
(Sti − x) .

Summing across i = 1, ..., n and multiplying by

1{|Sti
−x|<hn}
Nn
x

gives our estimator on the left side:

Vn(x) =

n∑
i=1

1{|Sti
−x|<hn}
Nn
x

(Sti+1
− Sti)

2

[ti+1 − ti]
= σ2(x) +

2σ2(x)

x

n∑
i=1

1{|Sti
−x|<hn} (Sti − x)

Nn
x

(20)

where
n∑
i=1

1{|Sti
−x|<hn}
Nn
x

= 1.

This shows the following result:

Under the linear approximation assumption, the variance estimator is biased. If on average
Sti > x, then the estimator will be biased upward.

This will typically be the case, as discussed earlier, if Eti(Sti+1
) > Sti and σ2(x) is increasing in x.
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A.5.1 The Bias Correction

Using expression (20), an approximately unbiased estimator for σ2(x) can be shown to be the following.

σ̂2(x) =
Vn(x)

1 + 2
x

∑n
i=1

1{|Sti
−x|<hn}(Sti

−x)

Nn
x

(21)

Proof:

Et

 Vn(x)

1 + 2
x

∑n
i=1

1{|Sti
−x|<hn}(Sti

−x)

Nn
x



= Et


σ2(x)

(
1 + 2

x

∑n
i=1

1{|Sti
−x|<hn}(Sti

−x)

Nn
x

)

1 + 2
x

∑n
i=1

1{|Sti
−x|<hn}(Sti

−x)

Nn
x

 = σ2(x).

A.6 Inconclusive Region and the Probability of Default
The hypothesis testing method, based on upper and lower bounds for the volatility function, is conserva-
tive. As such, there is a region where the hypothesis testing is inconclusive. In this inconclusive region,
this section computes a lower bound on the probability of default.

Recall that the lower convex hull and the upper convex hull functions satisfy the inequalities
σ2
l (x) ≤ σ2(x) ≤ σ2

u(x) by construction where x ∈ [0,∞). Given the integrals: I :=
∫∞
1

x
σ2(x)dx,

Iu :=
∫∞
1

x
σ2
l (x)

dx, and Il :=
∫∞
1

x
σ2
u(x)

dx, this implies that

Iu > I > Il.

This is because the estimates are in the denominator of the integrals. Therefore,14

Iu <∞ ⇒ I <∞ ⇒ Il <∞. (22)

We note that
I <∞ ⇔ bubble.

Next assume that the upper and lower convex hulls satisfy

σk(x) := αkx
βk , (23)

where αk ≥ 0 and k ∈ {u, l}. Substitution into the integrals yields:

Ik <∞ ⇔ βk > 1

for k ∈ {u, l}.
Given the hypothesis testing provides no conclusion regarding whether the price process exhibits a

bubble, we take the Bayesian perspective that the variance functions, integrals, and betas are random

14In the other direction, Il = ∞ ⇒ I = ∞ ⇒ Ik = ∞.
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variables on a probability space (Ψ,G ,P)whereP is the posterior distribution for these randomvariables
given the price observations xi ∈ [0,∞) : i = 1, ..., n.

Given this interpretation, letting ψ ∈ Ψ, then for a given x ∈ [0,∞), σ(x)ψ : Ψ → R and σk(x)ψ : Ψ →
R are random functions, and {I (ψ),Ik(ψ), β(ψ), βk(ψ)} are random variables for k ∈ {u, l}. Because
we are not interested in the parameter αk,we assume it is a constant for k ∈ {u, l}.

On this probability space, we have the following events: bubble = {ψ ∈ Ψ : I < ∞} and {ψ ∈ Ψ :

Ik <∞} for k ∈ {u, l}. Note that these events are exhaustive and mutually exclusive, i.e. {ψ ∈ Ψ : I <

∞} ∪ {ψ ∈ Ψ : I = ∞} = Ψ, and the same for Ik, k ∈ {u, l}.
Expression (22) gives15

{ψ ∈ Ψ : Iu <∞} ⊆ {ψ ∈ Ψ : I <∞} ⊆ {ψ ∈ Ψ : Il <∞},

which implies that
P{βl > 1} = P{Iu <∞} ≤ P{I <∞} = P{bubble}

and
P{bubble} ≤ P{Iu <∞} = P{βu > 1}.

The probability distribution (law) for βk, k ∈ {u, l} is denoted

Prob(βk ≤ x) := P{β−1
k ((−∞, x])}

for (−∞, x] ∈ B(R), the Borel σ-algebra. Then,

1− Prob(βl ≤ 1) = P{βl > 1} ≤ P{bubble}

and
P{bubble} ≤ P{βu > 1} = 1− Prob(βu ≤ 1).

We add the following assumption, motivated by the point estimation for βk obtained from the
regression analysis and its sampling distribution.

Assumption (Normal Distribution)

Prob(βk ≤ x) = Φ
(
β̂k, σ̂

2
β̂k

)
with mean EP(βk) = β̂k and variance varP(βk) = σ̂2

β̂k
.

Under this assumption,

Prob (βl > 1) = 1− Φ

(
1− β̂l
σ̂2
β̂l

)
≤ P{bubble}

and

P{bubble} ≤ 1− Φ

(
1− β̂u
σ̂2
β̂u

)
= Prob (βu > 1) .

15Similarly, the complements satisfy

{ω ∈ Ω : Il = ∞} ⊂ {ω ∈ Ω : I = ∞} ⊂ {ω ∈ Ω : Iu = ∞}.
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Given diffuse priors across the upper and lower bounds on the probability of a bubble, our point estimate
is

P̂{bubble} = 1−

[
Φ

(
1−β̂l

σ̂2
β̂l

)
+ Φ

(
1−β̂u

σ̂2
β̂u

)]
2

.
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