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Abstract

We provide a general state space framework for estimation of the parameters of
continuous-time linear DSGE models from discrete-time data. Our approach relies on
the exact discrete-time representation of the equilibrium dynamics, hence avoiding dis-
cretization errors. We construct the exact likelihood for data sampled either as stocks
or flows, based on the Kalman filter, and provide necessary and sufficient conditions for
local identification of the frequency-invariant structural parameters of the underlying
continuous-time model. We recover the unobserved structural shocks at measurement
times from the reduced-form residuals in the state space representation by exploiting
the underlying causal links implied by the economic model. We illustrate our approach
using an off-the-shelf real business cycle model. Extensive Monte Carlo experiments
show that the finite sample properties of our estimator are superior to those of an
estimator relying on a naive Euler-Maruyama discretization of the economic model.
In an application to postwar U.S. macroeconomic data, we estimate the model using
series sampled at mixed frequencies, and combinations of series sampled as stocks and
flows, and we provide a historical decomposition of the effects of shocks on observables
into those stemming from structural supply and demand shocks.
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1. Introduction

Dynamic stochastic general equilibrium (DSGE) models have become the workhorse for

macroeconomic analysis. Over the last decade, continuous-time methods have been gain-

ing increasing interest, with a large number of models being developed for the study of the

transmission mechanisms of monetary and fiscal policies, and the interactions between the

real and financial sides of the economy (e.g., Brunnermeier and Sannikov, 2014, Kaplan

et al., 2018, Posch, 2020, Liemen and Posch, 2022, Fernández-Villaverde et al., 2023). This

increase in popularity has led to the development and improvement of numerical methods for

approximation of the solutions of both representative and heterogeneous agent continuous-

time models (e.g., Posch and Trimborn, 2013, Ahn et al., 2018, Parra-Alvarez et al., 2021,

Achdou et al., 2022). However, considerably less work has been devoted to the study of how

to take these models to the data. This step requires addressing the timing mismatch, with the

economic theory assuming that time evolves continuously, and the data measured at discrete

points in time. The issue is particularly pressing in macroeconomics, with measurements

usually only available at low frequencies, e.g., monthly, quarterly, or annually.

In this paper, we propose and analyze a method for estimation and inference from mul-

tivariate linear continuous-time structural economic models based on discrete-time observa-

tions. The approach accounts for the discrete nature of the sampling scheme, while keeping

the underlying probabilistic structure unaltered. The discrete-time data generating process

results from a combination of the discrete sampling scheme and the underlying continuous-

time model. As the decision intervals of economic agents are not tied to the observation

intervals of sampled data, the frequency of measurement is not relevant for the parameters

of interest, namely, those of the continuous-time model. Relying on the latter, our approach

provides a logically consistent basis for jointly accommodating variables sampled at different

(mixed) frequencies, and according to different schemes, such as stocks, flows, or combi-

nations of these. A stock is a variable measured at a given point in time, e.g., a price or

an interest rate at the end of the period, whereas a flow is measured as the accumulated

amount from beginning to end of the period, e.g., consumption or GDP. Upon estimation,

the frequency-invariant structural parameters can, if desired, be mapped to parameters as-

sociated with any discrete frequency of interest, not only that of the observed data.

The starting point of our development is the system of equations characterizing the so-

lution of linear(-ized) continuous-time DSGE models, usually a system of multiple linear

stochastic differential equations (SDEs) describing the dynamics of the optimal state vari-

ables in the economy, together with a set of algebraic equations representing equilibrium

conditions, optimal policy functions, or (static) no-arbitrage conditions. We obtain the so-
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lution to the system at the discrete observation times in the form of a vector autoregressive

model of order one, VAR(1). When combined with the algebraic equations evaluated at

the same discrete points in time, this delivers the distribution of the observations, while

maintaining the cross-equation restrictions implied by the rational expectations solution of

the economic model, and without introducing discretization errors that might otherwise con-

taminate parameter. We express the solution as a time-invariant exact discrete state space

representation (ED-SSR). Reliance on the ED-SSR implies that all relevant information in

the data is retained, and allows evaluating the likelihood function using the Kalman filter.

For estimation, we consider a likelihood-based framework, along the lines of Harvey and

Stock (1985) and Zadrozny (1988). Consistency of the maximum likelihood estimator (MLE)

requires local identification of the structural parameters of the underlying continuous-time

model. We derive necessary and sufficient conditions for local identification from the second-

order moments of the discrete-time observations by exploiting the links between (i) the deep

parameters of the model, (ii) the reduced-form parameters of the continuous-time ratio-

nal expectations solution, and (iii) the reduced-form parameters of the discrete-time state

space representation. Our approach to local identification extends that of Komunjer and Ng

(2011) for discrete-time linear DSGE models. In the latter, the reduced-form parameters

of the (discrete-time) rational expectations solution correspond closely to those of the state

space representation in that setting, whereas we obtain additional dimensions for satisfying

the necessary and sufficient rank condition for local identification of the parameters of the

underlying continuous-time model by distinguishing (ii) and (iii). Moreover, in the absence

of local aliases (e.g., under a standard condition on oscillations of Phillips, 1973), the local

identification conditions are (partly or fully) recast in terms of the coefficient matrices of

the underlying continuous-time system and their parameter derivatives, as opposed to the

reduced-form (Kalman filter) matrices of the discrete-time state space representation.

Given the discrete-time nature of the data, the residuals from the empirical model are

composites of the primitive structural shocks in the underlying continuous-time model, re-

flecting both time-aggregation and the contemporaneous and dynamic relations among vari-

ables between measurements. Therefore, we propose a method to approximately recover

the structural shocks at measurement times from the reduced-form residuals, exploiting the

causal links of the continuous-time model. Ability to back out the structural shocks is im-

portant, e.g., for understanding the sources of business cycle fluctuations, the propagation

of exogenous shocks through the economy, and macroeconomic policy effects. Our strategy

resembles the use of short- and long-run identifying restrictions on the variance-covariance

matrix common in the structural VAR literature, as pioneered by Sims (1986), Bernanke

(1986), Shapiro and Watson (1988), and Blanchard and Quah (1989).
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The state space approach to inference on continuous-time models from discrete-time ob-

servations goes back to Jones (1981). The framework accommodates unobserved components,

measurement errors, mixed observation frequencies, missing observations, and unequally

spaced observation intervals. Alternative approaches not relying on state space representa-

tions have also been proposed, including moment-based methods (Hansen and Scheinkman,

1995), likelihood-based methods (Bergstrom, 1983, Lo, 1988, Aı̈t-Sahalia, 2002), estimat-

ing functions (Bibby and Sørensen, 1995), and nonparametric techniques (Florens-Zmirou,

1993, Jiang and Knight, 1997). Phillips and Yu (2009) provide an overview of various ap-

proaches. Recent applications to DSGE models include Posch (2009), Christensen et al.

(2016), Fernández-Villaverde et al. (2023), and Chambers et al. (2023).

To investigate the properties of our approach, we consider a continuous-time version of

the RBC model with indivisible labor of Hansen (1985), with shocks to capital and total

factor productivity (TFP), as an off-the-shelf benchmark. We verify our local identification

conditions for this model, and conduct extensive Monte Carlo experiments to study the finite

sample properties of the MLE, as well as the ability to recover the structural shocks, with data

sampled as stocks, flows, or a mixture. The simulations shed light on the effects of model mis-

specification resulting, e.g., from using a state space representation for stock variables when

the observed data are in fact sampled as flows, and the consequences of replacing the ED-

SSR by an alternative state space representation derived from a naive Euler-Maruyama (EM)

discretization of the equilibrium dynamics. The results show that our approach delivers ac-

curate estimates, even when applying the estimation procedure based on the linearized model

to data from the DGP for the true nonlinear model. It is preferred over the EM alternative,

which suffers from discretization error, implying that the estimates in effect are of discrete-

time parameters only associated with the continuous-time parameters of interest up to the

degree of approximation, and this introduces substantial biases. Our results on the directions

and relative magnitudes of finite sample biases in our multivariate state space case are con-

sistent with previous results obtained for simpler (e.g., univariate, and/or perfectly observed)

processes. Similarly, while our approach recovers the unobserved structural shocks with great

precision, the EM approximation performs poorly in comparison, due to discretization error

in the variance-covariance structure. Although the approximation is popular in finance due

to the availability of relatively high-frequency (e.g., daily, intradaily) data, the comparatively

low frequency of macroeconomic data is particularly damaging to the EM method.

We provide an empirical illustration of our approach by estimating the benchmark model

using quarterly data on aggregate real consumption and hours worked for the U.S economy

over the period from 1960:Q1 through 2019:Q4. The application verifies the feasibility of our

method, and estimates are consistent with those in the business cycle literature. A historical
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shock decomposition indicates that the U.S. business cycle has mainly been driven by ag-

gregate supply shocks, as indicated by the dominant contribution of recovered TFP shocks

to consumption growth, whereas deviations in hours worked from the steady state mainly

have reflected aggregate demand shocks, as identified with the recovered shocks to capital

accumulation. Drawing on the frequency-invariance of the parameters of the underlying

continuous-time model, the application illustrates the use of mixed-frequency data series by

including monthly consumption expenditures, along with quarterly hours, with consistent

results across common and mixed frequencies. Finally, the use of mixed stock and flow vari-

ables is illustrated by including the real interest rate as proxy for the rental rate of capital.

The paper is laid out as follows. Section 2 introduces the mapping between the continuous-

time DSGE model and the exact discrete-time state space representation, as well as the

construction of the likelihood function. Section 3 presents the local identification analysis,

and Section 4 our method for recovering structural shocks. Section 5 shows the results of

the Monte Carlo study, and Section 6 the empirical application. Section 7 concludes. All

proofs, derivations, and some additional results are provided in the Online Appendix.1

2. The econometric framework

2.1 The economic model

Let y(t) ∈ Rmy denote a vector of control or jump variables at time t, and x(t) ∈ Rmx a

vector of possibly unobserved state or predetermined variables, t ∈ R. Further, let θ ∈ Θ ⊂
Rmθ be the vector of structural parameters characterizing preferences, technology, and/or

endowments, with Θ the parameter space of all theoretically admissible values of θ. We

consider a class of continuous-time linear(-ized) DGSE models whose rational expectations

solution can be represented as

dx(t) = A(θ)x(t)dt+B(θ)dw(t) , given x(t0) = x0 , (2.1)

y(t) = C(θ)x(t) , (2.2)

where w(t) ∈ Rmw is a vector of independent standard Brownian motions, w(t) ∼ N (0, tI).

By (2.1), x(t) is governed by a multivariate Ornstein-Uhlenbeck (OU) diffusion process de-

scribing the optimal dynamics of the state variables, with local drift matrix A(θ) ∈ Rmx×mx ,

diffusion matrix B(θ) ∈ Rmx×mw , mx ≥ mw, and positive semi-definite instantaneous covari-

ance matrix Σ(θ) = B(θ)B(θ)⊤ ∈ Rmx×mx . The interpretation of dw(t) is that of primitive

1Codes for the empirical analysis, including a toolbox for checking our local identification conditions, are
available from authors’ homepages.
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structural shocks driving the economy. Equation (2.2) determines the optimal values of

the control variables as functions of the state variables, with reaction or loading matrix

C(θ) ∈ Rmy×mx . The entries of A(θ), B(θ), and C(θ) are time-invariant reduced-form

parameters and, in turn, nonlinear functions of the structural parameters θ, with the map

θ 7→ Λc(θ) = (A(θ),B(θ),C(θ)) (2.3)

embodying the cross-equation restrictions imposed by the rational expectations solution. We

adopt the following assumption, such that equations (2.1)-(2.2) define a stable linear system.

Assumption 1 (Stability). For all θ ∈ Θ, the system matrix A(θ) is full rank and stable,

i.e., every eigenvalue of A(θ) has strictly negative real part.

Two issues arise when considering statistical inference on the continuous-time model

(2.1)-(2.2). First, measurements are available in discrete time, only, so it is important to

distinguish variables measured as stocks and flows. Secondly, some variables in the model

may be latent, or unobservable. We illustrate our approach by assuming that all variables

in x(t) are unobserved, while y(t) contains a mixture of stock and flow measurements.

2.2 State space representation

Let xs
τ = x(tτ ) denote the n

s
x-vector containing the realizations of the continuous-time state

variables x(t) at measurement time tτ , τ ∈ Z+, and let xf (tτ ) =
∫ tτ
tτ−1

x(u)du be the cu-

mulated values over the time interval (tτ−1, tτ ].
2 Since each observed variable is sampled

either as a stock or a flow, we may order the ny measurements as yτ =
[
ys⊤
τ ,yf⊤

τ

]⊤
, with

ys
τ = ys(tτ ) the n

s
y stocks, and yf

τ =
∫ tτ
tτ−1

yf (u)du the nf
y flows, ny = my = ns

y + nf
y . Thus,

ys
τ = Ss

yyτ , and yf
τ = Sf

yyτ , using the ns
y × ny and nf

y × ny matrices

Ss
y = [ Ins

y
0ns

y×nf
y
] , Sf

y = [ 0nf
y×ns

y
Inf

y
]

selecting the stock and flow variables. By (2.2), yf
τ = Sf

yC(θ)xf (tτ ), and we let xf
τ =

Sf
xx

f (tτ ), with the nf
x × ns

x matrix Sf
x selecting the nf

x elements of xf (tτ ) that the flow mea-

surements yf
τ depend on, through C(θ).3 Thus, yf

τ = Sf
yC(θ)Sf⊤

x Sf
xx

f (tτ ) = Sf
yC(θ)Sf⊤

x xf
τ .

To match the continuous-time linear model with the discrete-time nature of the data, we

introduce an exact time-invariant discrete-time Gaussian state space representation that is

consistent with the observations being generated by the system (2.1)-(2.2) at a fixed sampling

2We use m for the dimensions in the continuous-time model, and n when referring to the discrete-time
realizations. Thus, nsx = mx.

3Sf
x selects the entries of xf (tτ ) corresponding to non-zero columns of Sf

yC(θ).
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frequency determined by the spacing between observations, h = tτ − tτ−1 > 0. First, using

arguments similar to those in Phillips (1959, 1973), Bergstrom (1966, 1984), and Harvey

(1990), we derive a discrete-time VAR(1) process for the ns
x state variables xs

τ from the exact

solution to the SDE system (2.1) at measurement times tτ . Next, we compute the nf
x flows

xf
τ by aggregating the stocks over the time interval (tτ−1, tτ ], and collect all state variables

into the nx = ns
x+n

f
x vector xτ =

[
xs⊤
τ ,xf⊤

τ

]⊤
.4 Finally, we evaluate the policy function (2.2)

at tτ to compute the corresponding stock and flow measurements of the control variables,

yτ =
[
ys⊤
τ ,yf⊤

τ

]⊤
. The resulting representation is summarized in the following proposition.

Proposition 1 (Exact discrete state space representation). Let x(t) and y(t) be generated by

the continuous-time system (2.1)-(2.2). Under Assumption 1, the stocks and flows at mea-

surement times, {xs
τ ,y

s
τ} and {xf

τ ,y
f
τ }, satisfy the discrete-time state-space representation[

xs
τ

xf
τ

]
=

[
Ah(θ) 0ns

x×nf
x

Sf
xA(θ)−1(Ah(θ)− Ins

x
) 0nf

x×nf
x

][
xs
τ−1

xf
τ−1

]
+

[
ηs
τ

ηf
τ

]
, (2.4)[

ys
τ

yf
τ

]
=

[
Ss
yC(θ) 0ns

y×nf
x

0nf
y×ns

x
Sf
yC(θ)Sf⊤

x

][
xs
τ

xf
τ

]
, (2.5)

where Ah(θ) ∈ Rns
x×ns

x is given by the matrix exponential

Ah(θ) = exp (A(θ)h) =
∞∑
i=0

(A(θ)h)i

i!
= Ins

x
+A(θ)h+ 1

2
A(θ)2h2 + . . . , (2.6)

and the nx-vector of reduced-form disturbances is

ητ =

[
ηs
τ

ηf
τ

]
=

[ ∫ tτ
tτ−1

exp(A(θ)(tτ − u))B(θ)dw(u)

Sf
x

∫ tτ
tτ−1

A(θ)−1
(
exp (A(θ)(tτ − u))− Ins

x

)
B(θ)dw(u)

]
, (2.7)

with mean E [ητ ] = 0nx×1, covariance matrix

Ση,h(θ) = E
[
ητη

⊤
τ

]
=

[
Σηs,h(θ) Σηsηf ,h(θ)

Σηsηf ,h(θ)
⊤ Σηf ,h(θ)

]
, (2.8)

where

Σηs,h(θ) =

h∫
0

exp (A(θ)(h− u))Σ(θ) exp
(
A(θ)⊤(h− u)

)
du , (2.9)

4Thus, nx ≥ mx, since mx = nsx.
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Σηsηf ,h(θ) =

h∫
0

u∫
0

exp(A(θ)(u− r))Σ(θ) exp(A(θ)⊤r)drdu Sf⊤
x , (2.10)

Σηf ,h(θ) = Sf
x

h∫
0

u∫
0

exp(A(θ)r)Σ(θ) exp(A(θ)⊤r)drdu Sf⊤
x , (2.11)

and autocovariance matrices E
[
ητη

⊤
τ−ℓ

]
= 0nx×nx , ℓ ∈ Z \ {0}.

We refer to (2.4)-(2.5) as the Exact Discrete State Space Representation (ED-SSR) with

sampling frequency h. Throughout, the time unit is taken as one year, so h = 1 refers to

annual, h = 1/4 to quarterly, and h = 1/12 to monthly observations, etc. Although the

ED-SSR does not characterize the behavior of variables between measurements, it is exact

in the sense that there is no discretization error in (2.4)-(2.5), regardless of h.5

The ED-SSR transition equation (2.4) differs from a standard VAR(1) in that the reduced-

form parameters in the transition matrix are restricted in a nonlinear manner involving the

matrix exponential Ah(θ) from (2.6), and the covariance matrix (2.8) depends on both A(θ)

and B(θ).6 Further, by (2.7), the error term ητ does not represent structural shocks, but

instead a reduced-form disturbance—a moving average of the structural shocks dw(u) over

an interval of length h, with time-variation in weights determined by A(θ) and B(θ).

In Proposition 1, the assumption that all the state variables x(t) are latent allows deriv-

ing the dynamics of the flow state variables by integrating those of the stock state variables

(cf. Harvey and Stock, 1985). This in turn implies that the exact discretization of the flow

state variable dynamics has a VAR(1) representation. In contrast, Bergstrom (1983, 1984)

considers a system with purely observed xτ and no yτ , leading to a VARMA(1,1) represen-

tation for the flows.7 Crucially, the two approaches are equivalent, although they result in

different dimensions of the state vector (see Online Appendix C).

The measurement equation (2.5) relates the observables to the latent state variables. We

refer to an ED-SSR representation with all observables sampled as stocks (nf
y = 0) as an

S-SSR, one with all observables sampled as flows (ns
y = 0) as an F-SSR, and one including

both stock and flow measurements (ns
y > 0, nf

y > 0) as an MX-SSR representation.

5For univariate processes in which the volatility in (2.1) is state dependent, e.g., square root processes,
Nowman (1997) proposes an approximate discretization by assuming that volatility changes only at mea-
surement times, B(x(t),θ) = B(x(tτ−1),θ), for t ∈ [tτ−1, tτ ).

6In Online Appendix B, we show how to compute these matrices using an eigendecomposition and the
matrix factorization approach of Van Loan (1978).

7Bergstrom (1983, 1984) labels the solution of the SDE at observation times the “exact discrete model.”
See McCrorie (2009) and Chambers et al. (2018) for a comprehensive review on the exact discrete model. Rep-
resentations of higher-order systems of stationary and non-stationary SDEs are discussed in Chambers (1999).
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The ED-SSR (2.4)-(2.5) can be compactly written in the ABCD state space form

xτ+1 = A(θ;h)xτ + B(θ;h)ϵτ+1 , (2.12)

yτ+1 = C(θ;h)xτ + D(θ;h)ϵτ+1 , (2.13)

for conformable matrices A(θ;h), B(θ;h), C(θ;h), D(θ;h) (see Online Appendix D), with the

nϵ-vector ϵτ =
[
η⊤
τ ,υ

⊤
τ

]⊤
accommodating serially uncorrelated Gaussian errors, υτ , to ac-

count for any potential sampling or measurement error, υτ ∼ N (0,Συ,h(θ)), E
[
ητυ

⊤
τ−ℓ

]
= 0,

for all τ and ℓ.8 Thus, ϵτ is white noise, E[ϵτ ] = 0, with E[ϵτϵ⊤τ−ℓ] = Σϵ(θ;h) · I{ℓ = 0},
Σϵ(θ;h) = diag(Ση,h(θ),Συ,h(θ)), and nϵ depending on the features of the system.

Lemma 1. Under Assumption 1, for given h > 0, θ ∈ Θ, and z ∈ C, det(I− A(θ;h)z) = 0

implies |z| > 1.

By the lemma, if the continuous-time system is stable (Assumption 1), then so is the

discrete-time ABCD system (2.12)-(2.13), regardless the measurements being stocks or flows.

Remark 2.1. The state space representation (2.4)-(2.5) is not minimal,9 but can be recast

in minimal form using dimensionality reduction techniques (see Ahn et al., 2018), or by re-

arranging the state variables. In Online Appendix D, we obtain the minimal representation

by substituting out the flow state variables from the transition equation, so nx = ns
x = mx,

and we provide the matrices A(θ;h), B(θ;h), C(θ;h), D(θ;h), and Σϵ(θ;h) in (2.12)-(2.13)

corresponding to both the minimal and non-minimal ABCD representations. ■

2.3 Likelihood function

Let yT = {ys
τ ,y

f
τ }Tτ=0 be a sample of equidistant measurements of stock and flow variables.10

Based on yT , we consider maximum likelihood (ML) estimation of the unknown parameters

θ ∈ Θ of the continuous-time model (2.1)-(2.2) using the ABCD representation (2.12)-(2.13)

of the ED-SSR. With the state variables unobserved, the exact likelihood function is con-

structed using the Kalman filter. To ensure existence of the Kalman gain and convergence

of the Kalman filter recursions, we adopt the following additional assumption.

Assumption 2 (Nonsingularity). For every θ ∈ Θ, D(θ;h)Σϵ(θ;h)D(θ;h)
⊤ is nonsingular.

8In practice, for given h > 0, θ will be comprised of the frequency-invariant parameters of (2.1)-(2.2) and
the measurement error covariance matrix Συ,h(θ), so the latter represents an expansion of θ. The empirical
model can be augmented to accommodate VAR(1) measurement errors, following Ireland (2004).

9A minimal representation is one in which the dimension nx of the state equation is the smallest possible.
10Equidistant measurements are chosen for simplicity of exposition. Some variation in spacing between

observations is easily accommodated.
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Assumption 2 rules out stochastic singularity of the ABCD representation. This is equiv-

alent to assuming existence of a unique solution to the discrete algebraic Riccati equation of

the filter. Singularity arises in models with more observables than shocks, ny > nϵ.

The conditional log-likelihood function of the data, given y0, is constructed recursively

via the prediction error decomposition as

L
(
θ|yT , h

)
= log f

(
yT |θ, h

)
=

T∑
τ=1

log f
(
yτ |yτ−1;θ, h

)
, (2.14)

where f (yτ |yτ−1;θ, h) is the conditional density of the time tτ measurements yτ , given

the information yτ−1 = {y0, . . . ,yτ−1} at tτ−1. By the linear structure of the Gaussian

state space model, the conditional density is multivariate normal, with first- and second-

order moments determined by the one-step-ahead predictions of the measurements and

the associated prediction error covariance matrix. Under regularity conditions, the MLE

θ̂ = argmaxθ∈Θ L
(
θ|yT , h

)
delivers consistent, asymptotically normal and efficient esti-

mates of θ. Given θ̂, the information content in the full sample is used to predict the latent

states {xτ}Tτ=1 and residuals (smoothed reduced-form disturbances) {ητ}Tτ=1.
11

For nonsingular systems, ny ≤ nϵ, and under Assumptions 1 and 2, the ABCD represen-

tation in (2.12)-(2.13) admits the innovations representation (Anderson and Moore, 1979)

xτ+1|τ+1 = A(θ;h)xτ |τ + K(θ;h)ντ+1|τ , (2.15)

yτ+1 = C(θ;h)xτ |τ + ντ+1|τ , (2.16)

τ = 0, . . . , T − 1, with K(θ;h) the Kalman gain, xτ |τ the contemporaneous prediction of

the state vector, and ντ+1|τ the one-step-ahead prediction error for the measurements, each

conditional on yτ , and with prediction error covariance matrix Σν(θ;h). Thus, the condi-

tional moments in (2.14) are C(θ;h)xτ |τ and Σν(θ;h). The innovations representation, with

time-invariant K(θ;h) and Σν(θ;h), is fundamental for establishing the conditions for local

identification of the model parameters θ.12

We collect the matrices of the system (2.15)-(2.16) in the array

Λ (θ) = (A(θ;h),K(θ;h),C(θ;h),Σν(θ;h)) , (2.17)

with K(θ;h) and Σν(θ;h) functions of the matrices A(θ;h), B(θ;h), C(θ;h), D(θ;h), and

11See the Online Appendix E for details on the Kalman filter, the likelihood function, and the state- and
disturbance-smoother.

12We use the time-varying prediction error covariance and Kalman gain—Equations (E.4) and (E.7),
respectively, in Online Appendix E—for ML estimation purposes.
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Σϵ(θ;h) of the ABCD representation (2.12)-(2.13), obtained through the Kalman recursions.

For given h > 0, the latter matrices are, in turn, nonlinear functions (given in Online Ap-

pendix D) of the matrices Λc(θ) = (A(θ),B(θ),C(θ)) from (2.3) (and Συ,h(θ), in case of

measurement error) of the continuous-time model (2.1)-(2.2). Thus, the mapping θ 7→ Λ (θ)

is continuously differentiable with respect to θ ∈ Θ under the following assumption.

Assumption 3 (Differentiability). The mapping θ 7→ (Λc(θ),Συ,h(θ)) is continuously differ-

entiable with respect to θ ∈ Θ.

The identification analysis requires focusing on the minimal representation of the system.

This leads to the following assumption (Anderson and Moore, 1979).

Assumption 4 (Minimality). The innovations representation (2.15)-(2.16) is minimal, i.e.,

the reachability matrix R(θ;h) = [K(θ;h),A(θ;h)K(θ;h), ...,Anx−1(θ;h)K(θ;h)] and the ob-

servability matrix O(θ;h) = [C(θ;h)⊤,A(θ;h)⊤C(θ;h)⊤, ...,Anx−1(θ;h)⊤C(θ;h)⊤]⊤ are of

full row rank and full column rank, respectively.

To simplify proofs, we work with the minimal ABCD representation, so Λ (θ) is a function

of the matrices from this, and Assumption 4 is automatic.

3. Local identification of structural parameters

3.1 Observational equivalence

The consistency of the MLE relies on the ability to identify the true parameter vector, θ0,

given the distribution of the data. Following Rothenberg (1971), we characterize identifi-

cation in terms of observational equivalence. Thus, θ0 is (locally) identifiable if there is no

other θℓ ∈ Θ (in a neighborhood of θ0) for which f
(
yT |θℓ, h

)
= f

(
yT |θ0, h

)
, for all yT ,

and all T ≥ 1. Given our stationary linear Gaussian model structure, the probability dis-

tribution is characterized by the first two moments. Therefore, following Komunjer and Ng

(2011), who focus on recovering the parameters of a discrete-time stationary DSGE model,

the identification analysis is based on the autocovariances of the discrete-time observations.13

The autocovarianes are determined by Λ (θ) from (2.17).14 Since f
(
yT |θ, h

)
depends on

θ through Λ (θ), local identifiability of θ at θ0 requires that no other θℓ in a neighborhood of

13We always work with demeaned state space representations, so there is no information in the uncondi-
tional means. There is information in the conditional mean variation, as tracked by the state space model
(2.15)-(2.16), but since this is around the (zero) unconditional means, it is determined by the autocovariances.

14The autocovariances can be computed from the transfer function associated with the VMA(∞) rep-
resentation, which depends on the ABCD and residual covariance parameters or, equivalently, Λ (θ) from
(2.17), and determines the spectral density, so observational equivalence can be analyzed in terms of Λ (θ).
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θ0 generates a value Λ (θℓ) that yields the same density (likelihood) as Λ (θ0). Heuristically,

two things can go wrong. First, if Λ (θℓ) = Λ (θ0) for θℓ ̸= θ0, then obviously θ is not

identifiable in a neighborhood around θ0 containing θℓ. Second, the same is true even for

Λ (θℓ) ̸= Λ (θ0) if the two arrays have the same implications for the observables yτ+1 in

(2.15)-(2.16). Essentially, local identifiability is equivalent to the conditions that θ can be

backed out fromΛ(θ) in a neighborhood of θ0, and thatΛ(θ) can be backed out from the data

in the corresponding neighborhood of Λ(θ0). The latter is impossible if the system (2.15)-

(2.16) at θ = θ0 simply is the system at θℓ in the neighborhood upon pre-multiplication

of the state equation by an invertible matrix (similarity transform) Th, thereby leaving

the model for yτ+1 unchanged. Thus, a similarity transform is a full rank nx × nx matrix

Th satisfying ThA(θℓ;h)T
−1
h = A(θ0;h), ThK(θℓ;h) = K(θ0;h), C(θℓ;h)T

−1
h = C(θ0;h),

and Σν(θℓ;h) = Σν(θ0;h) (the latter for equivalent systems). Formally, Komunjer and Ng

(2011) consider the continuously differentiable mapping

δ(θ,Th) =
[
vec(ThA(θ;h)T

−1
h )⊤, vec(ThK(θ;h))

⊤, vec(C(θ;h)T−1
h )⊤, vech(Σν(θ;h))

⊤
]⊤
, (3.1)

where vec and vech are the vectorization and half-vectorization operators, and show that

under Assumptions 1, 2, and 4, θ0 and θℓ are observationally equivalent at frequency h if

and only if there exists a similarity transform Th such that

δ(θℓ,Th) = δ(θ0, Inx) . (3.2)

In this case, θℓ and θ0 generate identical autocovariances at all leads and lags, and hence

spectral densities.15 Conversely, there is no observationally equivalent θℓ in a neighborhood

of θ0 if and only if (3.2), considered as a system of nδ = n2
x+2nxny+ny(ny+1)/2 equations in

themθ+n
2
x unknowns (θℓ,Th), has a locally unique solution at (θℓ,Th) = (θ0, Inx) (note that

any θ0 ∈ Θ is observationally equivalent with itself). In this case, and under Assumptions

1, 2, and 4, θ is locally identifiable from the autocovariances of yτ at θ0 ∈ Θ, as shown by

Komunjer and Ng (2011). Local uniqueness of Th = Inx secures local identifiability of Λ(θ0)

from the data, and local uniqueness of θℓ = θ0 secures local identifiability of θ0 from Λ(θ0).

In our framework, given the underlying continuous-time DSGE model, the functional

dependence on θ in Λ(θ) is different than that in Komunjer and Ng (2011). In their case,

Λ (θ) reflects the rational expectations solution of the given discrete-time model, and the

parameter they identify is specific to the given observation frequency, h. In contrast, in

15Komunjer and Ng (2011) write the condition as δ(θℓ, Inx
) = δ(θ0,Th) when discussing observational

equivalence, and use the format (3.2) when discussing local identification. As the domain for Th is the space
of full rank nx × nx matrices, the two ways of writing the condition are equivalent. We retain the format
(3.2) throughout. Further, h is fixed and hence suppressed in Komunjer and Ng (2011).
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the continuous-time case, the non-linear cross-equation restrictions imposed by the rational

expectations solution are reflected in the matrices Λc(θ) = (A(θ),B(θ),C(θ)) from (2.3),

whereas the matrices in Λ(θ) in (2.17) in addition reflect the nonlinear transformation aris-

ing from the discretization and involving the matrix exponential (2.6), cf. Proposition 1.

This is represented through the mappings

θ 7→ (Λc(θ),Συ,h(θ)) 7→ Λ(θ) , (3.3)

where the left map relates the structural parameters to the reduced-form parameters implied

by the rational expectations solution of the continuous-time model, and the right map relates

these to the reduced-form parameters of the exact discrete-time innovations representation

(2.15)-(2.16), i.e., A(θ;h), K(θ;h), C(θ;h), and Σν(θ;h).

To study local identification in continuous-time linear DSGE models, we extend the

methodology developed in Komunjer and Ng (2011) for discrete-time linear DSGE models

by including the additional identifying information from the rational expectations solution of

the continuous-time model, available through the matrices Λc(θ).
16 In particular, we show

that in case of observational equivalence, so that the discrete-time matrices in Λ(θ) at θ0

and θℓ are related through the similarity transform as in (3.2), parts or all of the continuous-

time matrices in Λc(θ) are similarly related at θ0 and θℓ. This implies an increase in

the information content in the analogue of (3.1)-(3.2), with more equations available for

solving for the same number of unknowns, hence potentially improving identifiability in

the continuous-time case, relative to the discrete-time case, and in some cases allowing a

recasting of (3.1)-(3.2) entirely in terms of the continuous-time matrices.

3.2 Aliasing

Whether the observational equivalence conditions (3.1)-(3.2) can be recast in terms of the

continuous-time matrices depends on whether the model is subject to the aliasing problem,

which is specific to multivariate continuous-time models, nx ≥ 2. Aliasing refers to the

inability to distinguish proportional oscillatory behaviors generated by different SDEs based

on a sample of discrete-time observations. As discussed by Phillips (1973), aliasing at θ0

arises in case of non-injectivity of the matrix exponential (2.6) at A(θ0)h. Specifically, an

16Rothenberg (1971) considers additional information in the form of parameter restrictions, such as mean
restrictions, and Komunjer and Ng (2011) consider means, too. Alternative conditions for local identification
of discrete-time DSGE models have been studied in Iskrev (2010) and Qu and Tkachenko (2012), while Qu
and Tkachenko (2017) and Kociecki and Kolasa (2018, 2023) study global identification.
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alias at θ0 is an nx × nx matrix A0 ̸= A(θ0) solving the system

exp(A0h) = exp(A(θ0)h) . (3.4)

An assumption of no (local) aliases means that the equation (3.4) in A0 has a (locally)

unique solution at A0 = A(θ0). In our case, as the representation is minimal, the discrete-

time transition matrix in (2.12) and (2.15) is given by (cf. Equation D.3 in Online Appendix)

A(θ;h) = Ah(θ) = exp(A(θ)h) . (3.5)

Thus, in the presence of an alias A0, and if there exists θ1 ∈ Θ such that A(θ1) = A0, then

A(θ1;h) = exp(A(θ1)h) = exp(A0h) = exp(A(θ0)h) = A(θ0;h) , (3.6)

where the first and last equalities follow from (3.5), the second from the assumption that

A(θ1) = A0, and the third from aliasing (3.4). It follows from (3.6) that θ0 is not identifiable

from A(θ0;h), as obviously θ1 ̸= θ0, because A(θ1) = A0 ̸= A(θ0).

Aliasing implies that the A(θ;h) portion of the observational equivalence condition (3.2)

is satisfied for (θℓ,Th) = (θ1, Inx). If such solution, with θℓ ̸= θ0, extends to all of (3.2)

(for θℓ local to θ0, i.e., in an arbitrarily small neighborhood), then (local) uniqueness of the

solution (θℓ,Th) = (θ0, Inx) is violated, and (local) identifiability jeopardized.

If ∂vec(A(θ;h))/∂θ has rank mθ at θ0, then the mapping θ 7→ A(θ;h) is locally injec-

tive at θ0, and local aliases are ruled out. If, further, A(θ0;h) is locally identifiable (e.g.,

if Th = Inx is the only local similarity transform), then so is θ0. Phillips (1973) offers the

following assumption, under which the continuous-time model does not generate oscillations

with periods shorter than 2h, which in turn precludes local aliasing,17 although this is not

necessary for our main results.

Assumption 5 (Oscillations). The eigenvalues of A(θ0) are distinct, and do not differ by an

integer multiple of 2πi/h.

Importantly, (local) aliasing does not rule out (local) identifiability of θ0, as this in

part may rely on other portions of the model, beside A(θ0;h). Our focus is on the local

identifiability conditions that apply in the presence of the underlying continuous-time model.

We do not impose Assumption 5, but simply report separate local identification conditions,

according to whether or not local aliasing is ruled out.

17This is shown in Online Appendix F.
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3.3 Observational equivalence with underlying continuous-time model

Recall from (2.5) that Ss
y and Sf

y select the rows of yτ corresponding to stock and flow

measurements, respectively. Write the continuous-time reaction matrix from (2.2) as

C(θ) =

[
Ss
yC(θ)

Sf
yC(θ)

]
=

[
Cs(θ)

Cf (θ)

]
, (3.7)

similarly partitioned according to stocks and flows.

Lemma 2. Under Assumptions 1, 2, and 4,

(a) if there exists a full rank nx × nx matrix Th such that

ThA(θℓ)T
−1
h = A(θ0) , C(θℓ)T

−1
h = C(θ0)

ThK(θℓ;h) = K(θ0;h) , Σν(θℓ;h) = Σν(θ0;h) , (3.8)

then θ0 and θℓ are observationally equivalent, i.e., (3.2) applies;

(b) if Συ,h(θℓ) = Συ,h(θ0), and there exists a full rank nx×nx matrix T, and an orthogonal

mw ×mw matrix U, such that

TA(θℓ)T
−1 = A(θ0) , TB(θℓ)U = B(θ0) , C(θℓ)T

−1 = C(θ0) , (3.9)

then θ0 and θℓ are observationally equivalent, i.e., (3.2) applies, with Th = T;

(c) if θ0 and θℓ are observationally equivalent, i.e., (3.2) applies, for some full rank nx×nx

matrix Th, then

Cs(θℓ)T
−1
h = Cs(θ0) (3.10)

holds exactly;

(d) in (c), all conditions in (3.8) hold exactly in the absence of aliases, and the conditions

on A(·) and Cf (·) in (3.8) hold to order of approximation O(h) in general ( (3.10) and

the conditions on K(·), Σν(·) in (3.8) are still exact);

(e) in (c), if, in addition, Cs(θ0) has full column rank, and Συ,h(θℓ) = Συ,h(θ0), then

there exists an orthogonal mw ×mw matrix Uh such that all conditions in (3.9) hold

exactly in the absence of aliases, with T = Th, U = Uh, and to order of approximation

O(h) in general (condition (3.10) is still exact).
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Lemma 2 shows the implications of the underlying continuous-time model for the ob-

servational equivalence condition (3.1)-(3.2). By (3.8), the portion of the condition relating

to the transition and loading matrices A( · ;h), C( · ;h) of the discrete-time representation

(2.15)-(2.16) is alternatively stated directly in terms of A(·), C(·) from the continuous-time

system (2.1)-(2.2). By (3.9), under an additional assumption on the measurement error co-

variance Συ,h (e.g., if this zero, or known), the observational equivalence condition is recast

purely in terms of the continuous-time matrices Λc(·) from (2.3), including B(·).
Conversely, regardless of possible aliasing, the Lemma provides additional exact implica-

tions of observational equivalence, beyond those in (3.2) on the discrete-time matrices Λ(·),
namely, the ns

ynx conditions (3.10) on the portion of the continuous-time reaction matrix

C(·) corresponding to stock measurements. These implications reflect the rational expec-

tations solution of the continuous-time model, and are therefore not present in Komunjer

and Ng (2011). Further, in the absence of aliases, (3.8) provides necessary and sufficient

conditions for observational equivalence. These are recast as (3.9), without reference to the

innovations representation matrices Λ(·), under additional conditions. Full column rank of

Cs(θ0) requires at least as many stock measurements as state variables. Finally, regardless

of aliasing, observational equivalence implies that (3.8) holds to order O(h), as determined

by the observation frequency, and so does (3.9) under the additional conditions.

Remark 3.1. Condition (3.9) resembles a portion of the observational equivalence condi-

tion for singular systems (ny ≥ nϵ) in Komunjer and Ng (2011).The main differences are

that (3.9) involves Λc = (A,B,C) from the continuous-time model, and Συ,h, whereas the

Komunjer and Ng (2011) condition involves the discrete-time matrices, (A,B,C), as well as

(D,Σϵ) from the ABCD representation, and that we consider the non-singular case (ny ≤ nϵ).

Essentially, our proof ties the conditions on Λc to the relevant discrete-time matrices, which

are (A,K,C,Σν) from (2.15)-(2.16) in our case, as the non-singularity requires filtering. ■

3.4 Local identification with underlying continuous-time model

Based on (3.10), we extend Λ(θ) from (2.17) to Λ+(θ) = (Cs(θ),Λ(θ)). Correspondingly,

we augment δ(θ,Th) from (3.1) to the continuously differentiable mapping

δ+(θ,Th) =
[
vec
(
Cs(θ)T−1

h

)⊤
, δ(θ,Th)

⊤
]⊤
, (3.11)

used to formulate the nδ+ = ns
ynx + nδ equations (local identification conditions)

δ+(θℓ,Th) = δ+(θ0, Inx) (3.12)
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in the mθ + n2
x unknowns (θℓ,Th) in the next lemma, hence extending (3.2). Here, based

on (3.3) and (3.9), we also consider shifting the analysis from Λ to the more primitive Λc =

(A,B,C) from (2.3), based directly on the continuous-time matrices, and the corresponding

δc(θ,Th,Uh) =
[
vec
(
ThA(θ)T−1

h

)⊤
, vec (ThB(θ)Uh)

⊤ , vec
(
C(θ)T−1

h

)⊤]⊤
, (3.13)

used to formulate the nc = n2
x + nxmw + nynx equations

δc(θℓ,Th,Uh) = δc(θ0, Inx , Imw) (3.14)

in the mθ +n
2
x+m

2
w unknowns (θℓ,Th,Uh). The intermediate case, based on (3.8), involves

Λa(θ) = (A,C,K,Σν), and

δa(θ,Th) =
[
vec(ThA(θ;h)T−1

h )⊤, vec(C(θ;h)T−1
h )⊤, vec(ThK(θ;h))

⊤, vech(Σν(θ;h))
⊤]⊤

(3.15)

is used to formulate the nδ equations

δa(θℓ,Th) = δa(θ0, Inx) (3.16)

in the mθ + n2
x unknowns (θℓ,Th). Thus, whereas the original δ only involves the discrete-

time matrices Λ for the non-singular case, and the similarity transform Th, as in Komunjer

and Ng (2011), the mapping δ+
h in addition involves a portion of the continuous-time reaction

matrix C. The mapping δa replaces A, C in δ with A, C, and δc further replaces K, Σν with

B, while involving both Th and Uh. The rotation Uh only appears in the singular case in

Komunjer and Ng (2011), but arises in our non-singular case, as we link Λ and Λc (see also

Remark 3.1), and the pure continuous-time model (without measurement error) is singular.

Lemma 3 (Local identifiability). Under Assumptions 1, 2, and 4, for given h > 0,

(a) θ is locally identifiable from the autocovariances of yτ at θ0 ∈ Θ if and only if the

system (3.12) has a locally unique solution (θℓ,Th) = (θ0, Inx);

(b) in the absence of local aliases (e.g., under the additional Assumption 5), θ is locally

identifiable from the autocovariances of yτ at θ0 ∈ Θ if and only if the system (3.16)

has a locally unique solution (θℓ,Th) = (θ0, Inx);

(c) in (b), if, in addition, Cs(θ0) is of full column rank, and Συ,h(θ) is constant in a

neighborhood of θ0, then θ is locally identifiable from the autocovariances of yτ at

θ0 ∈ Θ if and only if the system (3.14) has a locally unique solution (θℓ,Th,Uh) =

(θ0, Inx , Imw).
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From Lemma 3.(a), regardless of possible aliasing, the parameters of the continuous-time

DSGE model are locally identifiable if and only if the augmented mapping δ+(θ,Th) from

(3.11) is locally injective at (θ0, Inx). By the implicit function theorem (IFT), a sufficient

condition for this is full column rank of the Jacobian J +(θ,Th) =
(

∂δ+(θ,Th)
∂θ

, ∂δ+(θ,Th)
∂vecTh

)
at

(θ0, Inx). In the discrete-time case, the Jacobian considered by Komunjer and Ng (2011)

corresponds to the submatrix J (θ,Th) of J +(θ,Th) associated with δ(θ,Th) from (3.1),

with rank and order conditions for local identification based on ∆(θ) = J (θ, Inx) at θ0,

∆(θ0) =


∂vec(A(θ;h))

∂θ
A(θ;h)⊤ ⊗ Inx − Inx ⊗ A(θ;h)

∂vec(K(θ;h))
∂θ

K(θ, h)⊤ ⊗ Inx

∂vec(C(θ;h))
∂θ

−Inx ⊗ C(θ;h)
∂vech(Σν(θ;h))

∂θ
0ny(ny+1)/2×n2

x


θ=θ0

. (3.17)

With the underlying continuous-time DSGE model, we augment δ(θ,Th) to δ+(θ,Th) in

(3.11), and hence J (θ,Th) to J +(θ,Th), affording an additional ns
ynx rows for fulfilling the

rank and order conditions for the relevant matrix ∆+(θ) = J +(θ, Inx) at θ0,

∆+(θ0) =

(
∂vec(Cs(θ))

∂θ
−Inx ⊗Cs(θ)

∆(θ)

)
θ=θ0

. (3.18)

Thus, our extension is based on the Jacobian
(

∂vec(Cs(θ)T−1
h )

∂θ
,

∂vec(Cs(θ)T−1
h )

∂vecTh

)
of the additional

exact observational equivalence conditions (3.10) on Cs(θ).18

When the firstmθ columns of ∆+(θ0) form a submatrix of full rank, then Λ+(θ) is locally

invertible at θ0, hence securing local identification of θ at θ0 if Λ
+(θ0) is locally identifiable,

i.e., if Th = Inx is the only local similarity transform. The latter condition is met if the

remaining n2
x columns of (3.18) form a full rank submatrix.

From Lemma 3.(b), in the absence of local aliases, the arguments are repeated, with

Λ+(θ) replaced by Λa(θ), δ
+(θ,Th) by δa(θ,Th) from (3.15), J +(θ,Th) by Ja(θ,Th) =(

∂δa(θ,Th)
∂θ

, ∂δa(θ,Th)
∂vecTh

)
, ∆+(θ) by ∆a(θ) = Ja(θ, Inx), and ∆+(θ0) from (3.18) by

∆a(θ0) =


∂vec(A(θ))

∂θ
A(θ)⊤ ⊗ Inx − Inx ⊗A(θ)

∂vec(C(θ))
∂θ

−Inx ⊗C(θ)
∂vec(K(θ;h))

∂θ
K(θ, h)⊤ ⊗ Inx

∂vech(Σν(θ;h))
∂θ

0ny(ny+1)/2×n2
x


θ=θ0

. (3.19)

Similarly, from Lemma 3.(c), in the absence of local aliases, and under additional condi-

18See the proof of Proposition 2 for the derivatives of δ+(θ,Th) in J +(θ,Th) for arbitrary (θ,Th).
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tions on Cs(θ0) and Συ,h, the arguments relating to local identifiability of the parame-

ters of the continuous-time model may be repeated once more, now with Λ+(θ) replaced

by Λc(θ) from (2.3), δ+(θ,Th) by δc(θ,Th,Uh) from (3.14), J +(θ,Th) by Jc(θ,Th) =(
∂δc(θ,Th,Uh)

∂θ
, ∂δc(θ,Th,Uh)

∂vecTh
, ∂δc(θ,Th,Uh)

∂vecUh

)
, ∆+(θ) by ∆c(θ) = Jc(θ, Inx , Imw), and ∆+(θ0) by

∆c(θ0) =


∂vec(A(θ))

∂θ
A(θ)⊤ ⊗ Inx − Inx ⊗A(θ) 0n2

x×m2
w

∂vec(B(θ))
∂θ

B(θ)⊤ ⊗ Inx Imw ⊗B(θ)
∂vec(C(θ))

∂θ
−Inx ⊗C(θ) 0nynx×m2

w


θ=θ0

. (3.20)

In contrast to ∆(θ0) in (3.17), which involves the matrices Λ(θ) of the discrete-time repre-

sentation (2.15)-(2.16) and their derivatives, following Komunjer and Ng (2011), ∆c(θ0) in

(3.20) depends exclusively on the matrices Λc(θ) of the continuous-time model (2.1)-(2.2)

and their derivatives. If the middle n2
x columns of ∆c(θ0) form a full rank submatrix, then

Th = Inx is the only local similarity transform, and the continuous-time matrices A(θ0) and

C(θ0) are locally identifiable. If, in addition, the last m2
w columns form a full rank subma-

trix,19 then Uh = Imw is the only factor rotation, and B(θ0) is locally identifiable, as well. In

this case, the observational equivalence conditions (3.9) are behind the result. Without local

constancy of the measurement error covariance, the relevant matrix (for developing the rank

condition) is ∆a(θ0) from (3.19), the intermediate case, with the discrete-time matrices A,

C replaced by their continuous-time counterparts A, C, while retaining K, Σν as in (3.17).

Proposition 2 (Rank and order conditions). Under Assumptions 1-4, for given h > 0,

(a) if θ0 ∈ Θ is a regular point of ∆+(θ), then the necessary and sufficient rank condition

for the identification of θ from the autocovariances of yτ in a neighborhood of θ0 ∈ Θ is

rank∆+(θ0) = mθ + n2
x . (3.21)

A necessary order condition is that

mθ ≤ nδ+ − n2
x = ns

ynx + 2nxny + ny(ny + 1)/2 ; (3.22)

(b) in the absence of local aliases (e.g., under the additional Assumption 5), if θ0 ∈ Θ

is a regular point of ∆a(θ), then the necessary and sufficient rank condition for the

identification of θ from the autocovariances of yτ in a neighborhood of θ0 ∈ Θ is

rank∆a(θ0) = mθ + n2
x . (3.23)

19Note that this requires full column rank of B(θ0).
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A necessary order condition is that

mθ ≤ nδ − n2
x = 2nxny + ny(ny + 1)/2 ; (3.24)

(c) in the absence of local aliases, if θ0 is a regular point of ∆c(θ), C
s(θ0) is of full col-

umn rank, and Συ,h(θ) is constant in a neighborhood of θ0, then the necessary and

sufficient rank condition for the identification of θ from the autocovariances of yτ in

a neighborhood of θ0 ∈ Θ is

rank∆c(θ0) = mθ + n2
x +m2

w . (3.25)

A necessary order condition is that

mθ ≤ nc − n2
x −m2

w = nxny + (nx −mw)mw . (3.26)

In Proposition 2, a regular point of a given Jacobian is one for which the rank remains

constant in a neighborhood. Relative to the condition for discrete-time linear DSGE models,

the rank condition (3.21) exploits the ns
ynx additional restrictions (3.10) onCs implied by the

rational expectations solution of the continuous-time DSGE model to help achieve sufficient

rank in this case. The order condition (3.22) requires that the number of equations in

condition (3.12) at least equal the number of unknowns in (θℓ,Th), i.e., mθ + n2
x. This, too,

is more easily met in the presence of the underlying continuous-time model, for ns
y > 0 (some

measurements are stocks). Substituting ∆+(θ0) from (3.18) for ∆(θ0) from (3.17) in (3.21)

and ns
y = 0 in (3.22) returns the Komunjer and Ng (2011) rank and order conditions.

In part (a) of Proposition 2, local identification is achieved regardless of potential aliasing.

Part (b) shows that absence of local aliases, such as in the case considered by Phillips (1973),

suffices for recasting the local identifiability conditions directly in terms of the continuous-

time transition and loading matrices A, C from (2.1)-(2.2) and their parameter derivatives,

as opposed to the discrete-time derived counterparts A, C. By part (c), the remaining Kalman

filter matrices in the conditions, K, Σν , are replaced by the continuous-time diffusion matrix

B from (2.1) under the additional conditions of full rank of Cs(θ0) and locally constant

(e.g., zero or known) measurement error covariance, and the requirement on the right side of

(3.25) is higher, by m2
w, as the similarity transform Th is accompanied by the rotation Uh.

In this case, the rank and order conditions do not involve h, and hence apply for arbitrary

spacing of observations—a result of reliance on the underlying continuous-time model.

The assumption of no local aliases in parts (b) and (c) (in particular, Assumption 5)
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does not preclude the existence of aliases at isolated points (i.e., not local to θ0).
20 Further,

even without any assumption on aliasing, the local identification conditions in part (a) of the

Proposition are exact, and the conditions in parts (b) and (c) provide useful approximate

criteria for local identification that apply to order h or better in general, cf. Lemma 2.(d)-(e).

In many applications, the structural parameters θ are restricted a priori. This includes

circumstances in which a subset of nR < mθ parameters are calibrated to particular values.

Following Rothenberg (1971), and the analysis of conditional identification in Komunjer and

Ng (2011), the conditions in Proposition 2 can be extended in a straightforward manner by

augmenting (3.11), (3.13) or (3.15) with the function φ defining the parameter restrictions.

Again, this implies that the number of rows in each of the Jacobians (3.18)-(3.20) in the

rank conditions (3.21), (3.23) and (3.25) is increased, now by nR, and so is the upper bound

in each of the order conditions (3.22), (3.24) and (3.26), hence leaving the conditions easier

to fulfill. In this type of extension, the additional rows in the Jacobian involves derivatives

with respect to θ, but neither Th nor Uh, unlike in our analysis.

4. Recovering structural shocks

The reduced-form disturbances ητ in (2.7) are composites of the underlying structural shocks

dw(u) occurring continuously within the time interval (tτ−1, tτ ]. We introduce a simple

approach to recover a sequence of structural shocks at measurement times, {uτ}τ∈Z+ , from

the reduced-form disturbances, where

uτ = h−1/2(w(tτ )−w(tτ−1)) (4.1)

is an mw-vector of Gaussian random variables with E [uτ ] = 0, and E
[
uτu

⊤
τ

]
= Imw .

Conceptually, our strategy partitions (tτ−1, tτ ] into n ≥ 1 sub-intervals (tτi−1, t
τ
i ] of length

hn = h/n, with tτ−1 = tτ0 < tτ1 < · · · < tτn−1 < tτn = tτ , as depicted in Figure 1. Thus,

for given n, integrated structural shocks are given by the Riemann sum
∑n

i=1 δw(tτi ) =

w(tτ ) − w(tτ−1) =
∫ tτ
tτ−1

dw(u), where δw(tτi ) = w(tτi ) − w(tτi−1). For given θ ∈ Θ, the

relation between the reduced-form disturbances and the structural shocks can be written as

ητ =

∫ tτ

tτ−1

H(θ; tτ − u)dw(u) = lim
n→∞

n∑
i=1

H(θ; tτ − tτi−1)δw(tτi ) , (4.2)

20This is shown in Online Appendix F. Stronger conditions ensuring global injectivity (no aliasing) based
on external restrictions on the transition matrix, e.g., in terms of eigenvalues and their multiplicity, and/or
the covariance matrix, have been proposed by Phillips (1973), McCrorie (2003), Blevins (2017), and others.
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observation frequency
t1 t2 t3

. . .
tτ−1 tτ

. . .
T

T = tT

n sub-intervals
tτ0 tτ1 tτ2 tτ3 tτ4

...
tτn−1 tτn

h

hn = h/n

Figure 1. Partitioning of sampling interval. The figure illustrates the observation points in the
sample, as well as the assumed subsampling scheme within each observation interval.

with H(θ; ·) a deterministic square integrable nx ×mw matrix function over (0, h],

H(θ; r) =

[
exp (A(θ)r)B(θ)

Sf
xA(θ)−1

(
exp (A(θ)r)− Ins

x

)
B(θ)

]
. (4.3)

Proposition 3. The mapping in (4.2) can be written as

ητ = h1/2H(θ;h)uτ +Rτ , (4.4)

where the remainder term, Rτ , is stochastically bounded,

Rτ = OP (h
3/2) , as h→ 0 . (4.5)

Remark 4.1. Alternative characterizations of Rτ in terms of the number of sub-intervals, n,

or the length of each, hn, are given in the proof of Proposition 3 in Online Appendix A. ■

The remainder Rτ in Proposition 3 provides a measure of the approximation error in-

curred when backing out uτ from ητ using

ητ ≈ h1/2H(θ;h)uτ , (4.6)

which is equivalent to setting n = 1 in (4.2), so that hn = h. This approximate linear relation

is illustrated in the following two examples, which resemble that in Section 5.1.

Example 1 (State vector with only stocks). Consider the bivariate continuous-time system[
dx1(t)

dx2(t)

]
=

[
a11 a12

0 a22

][
x1(t)

x2(t)

]
dt+

[
b1 0

0 b2

][
dw1(t)

dw2(t)

]
, (4.7)
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where the coefficients may be nonlinear functions of θ, and nf
x = 0, so that nx = ns

x = 2.

At measurement times τ , the state vector xτ =
[
xs1,τ , x

s
2,τ

]⊤
satisfies the transition equation

(2.4) where, by (4.6), the reduced-form disturbances are approximately given by[
ηs1,τ

ηs2,τ

]
≈ h1/2

[
exp(a11h)

a12 exp(a11h)−a12 exp(a22h)
a11−a22

0 exp(a22h)

][
b1 0

0 b2

][
u1,τ

u2,τ

]

= h1/2

[
u1,τb1 exp(a11h) + u2,τa12b2

exp(a11h)−exp(a22h)
a11−a22

u2,τb2 exp(a22h)

]
(4.8)

in terms of the structural shocks [u1,τ , u2,τ ]
⊤. Here, u2,τ impacts both ηs1,τ and ηs2,τ , so the

state variables are correlated in discrete time, although not in continuous time. ■

Example 2 (State vector with stocks and flows). Assume [x1(t), x2(t)]
⊤ is governed by (4.7),

and let nf
x = 1, with Sf

x = [1, 0], so that nx = ns
x + nf

x = 3. In this case, the state

vector in (2.4) is xτ = [xs1,τ , x
s
2,τ , x

f
1,τ ]

⊤ = [xs1,τ , x
s
2,τ ,
∫ tτ
tτ−1

x1(u)du]
⊤, and the reduced-form

disturbances ητ = [ηs1,τ , η
s
2,τ , η

f
1,τ ]

⊤, with ηs1,τ , η
s
2,τ as in Example 1, and

ηf1,τ ≈ h1/2

(
u1,τb1

(exp(a11h)− 1)

a11
+ u2,τa12b2

a11 − a22 − a11 exp(a22h) + a22 exp(a11h)

a11a22(a11 − a22)

)
.■

Remark 4.2. By (4.8), the dimension of ητ equals that of the state vector even if b1 = 0 in

each of Examples 1 and 2, i.e., when the endogenous state variable is not subject to struc-

tural shocks. Hence, there can be more reduced-form disturbances than structural shocks.

This is particularly relevant when checking the validity of Assumption 2. ■

Since the econometrician rarely has control over n, the next proposition shows that the

error using n = 1 is bounded in probability. Thus, writingH(θ) = h1/2H(θ;h), the structural

shocks at measurement times are recovered from the reduced-form disturbances as

ũτ = H(θ)†ητ , (4.9)

based on (4.6), with superscript † denoting generalized (e.g., Moore-Penrose) inverse. The ap-

proximation implied by (4.9) resembles the identification mechanisms commonly used in the

structural VAR literature. Theoretical restrictions are imposed, here through H(θ), to un-

cover the structural shocks otherwise hidden in the correlated reduced-form disturbances ητ .

Proposition 4. For all θ ∈ Θ, the error in the approximation of the structural shocks is

stochastically bounded,

ũτ − uτ = OP (1) .
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Example 3 (Recovering structural shocks). Consider the model in Example 1. Solving (4.8),

ũ2,τ = h−1/2 exp(−a22h)b−1
2 η2,τ ,

ũ1,τ = h−1/2 exp(−a11h)b−1
1 η1,τ − h−1/2a12 exp(−(a11 + a22)h)(exp(a11h)− exp(a22h))

b1(a11 − a22)
η2,τ .

While ũ2,τ is proportional to η2,τ , ũ1,τ is a linear combination of both residuals. ■

5. Monte Carlo evidence

5.1 The artificial economy

We consider a continuous-time version of the RBC model with indivisible labor of Hansen

(1985), with shocks to capital and TFP. A complete derivation is in Online Appendix G.

Preferences. A representative agent maximizes expected discounted lifetime utility from

consumption C(t) and leisure L(t), E0

∫∞
0
e−ρt (lnC(t) + ψL(t)) dt, where ρ > 0 is the sub-

jective discount rate, and ψ the weight of leisure in utility. Hours worked per unit of time

are N(t) = 1 − L(t). The agent’s income Y (t) consists of wages and rents from selling la-

bor and renting capital to firms, and is allocated between consumption and investment,

C(t) + I(t) = W (t)N(t) + r(t)K(t), where W (t) is the real wage, r(t) the real interest rate,

and K(t) the capital stock. The latter evolves according to

dK(t) = (I(t)− δK(t)) dt+ σkK(t)dwk(t), K (0) = K0 , (5.1)

with δ ≥ 0 the mean depreciation rate, and wk(t) a standard Brownian motion representing

shocks to the depreciation rate, marginal efficiency of investment, or future productivity of

the capital stock. The diffusion parameter σk > 0 regulates the variance of these shocks.

Technology. The representative firm produces aggregate output Y (t) according to

Y (t) = exp (Z(t))K(t)α (exp (ηt)N(t))1−α , α ∈ (0, 1) , (5.2)

where η > 1 is the constant growth rate of labor-augmenting technological progress, and

Z(t) a zero-mean measure of TFP, evolving according to the Ornstein-Uhlenbeck process

dZ(t) = −ρzZ(t)dt+ σzdwz(t) , Z (0) = Z0 , (5.3)

with mean reversion ρz > 0, and shocks dwz(t) independent of dwk(t), with volatility σz > 0.
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Equilibrium. The equilibrium allocations {c(t), n(t), k(t)}t≥0, detrended at rate η, satisfy

0 = ψc(t)n(t)− (1− α) exp(z(t))k(t)αn(t)1−α , (5.4)

Et [dc(t)] =

[ (
α exp (z(t)) k(t)α−1n(t)1−α − ρ− δ − η

)
− σ2

k

k(t)ck (k(t), z(t))

c(t)

+
1

2

(
σ2
k

(
k(t)ck (k(t), z(t))

c(t)

)2

+ σ2
z

(
cz (k(t), z(t))

c(t)

)2
)]

c(t)dt , (5.5)

dk(t) =
(
exp (z(t)) k(t)αn(t)1−α − c(t)− (δ + η) k(t)

)
dt+ σkk(t)dwk(t) , (5.6)

with z(t) governed by (5.3). Equation (5.4) is the intratemporal labor supply equation, and

(5.5) the Euler equation, with ck(·) and cz(·) the marginal responses of optimal consumption

c(·) to changes in capital and TFP. The solution is not available in closed form, and we

approximate it by log-linearizing the equilibrium conditions around the deterministic steady

state, then computing the rational expectations solution using the QZ (generalized Schur)

decomposition of Sims (2002). Under the Blanchard and Kahn (1980) conditions, the solution

admits the representation (2.1)-(2.2), with x(t) = [k̂(t), ẑ(t)]⊤, y(t) = [ĉ(t), n̂(t)]⊤, dw(t) =

[dwk(t), dwz(t)]
⊤, circumflex denoting log-deviations from steady state values, and

A(θ) =

[
ϕkk ϕkz

0 −ρz

]
, B(θ) =

[
σk 0

0 σz

]
, C(θ) =

[
ϕck ϕcz

ϕnk ϕnz

]
, (5.7)

where the reduced-form parameters ϕ = (ϕck, ϕcz, ϕnk, ϕnz, ϕkk, ϕkz)
⊤ depend nonlinearly on

the structural parameters θ = (ρ, ψ, α, δ, η, ρz, σz, σk)
⊤.21

5.2 Finite sample properties of the MLE

We investigate the finite sample properties of the estimators of the structural parameters

θ of the continuous-time model from Section 5.1 based on discrete-time data. We generate

M = 10, 000 samples for consumption, C, and labor, N , from the data generating process

(DGP) given by the nonlinear solution to the RBC model, using the parameter values in Ta-

ble 1.22 With the estimator relying on the solution to the linearized model (5.7), our analysis

in effect regards the estimation of a misspecified (linearized) DSGE model. In the Online

Appendix, we report results using the alternative DGP based on the linear approximation.

21The analytical mapping between θ and ϕ, provided in Online Appendix G, reveals that ψ is unidentified,
since it vanishes from the rational expectations solution of the model.

22Since the model does not admit a closed-form solution, we approximate it globally using collocation
methods (see Parra-Alvarez, 2018). Details on the solution and simulation are in Online Appendix G.
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The parameter values are standard in the literature, and match long-run values of U.S.

macroeconomic aggregates observed over the postwar period. We set α = 0.30 to match an

average labor income to GDP ratio of 70%. With a time unit of one year, the depreciation

rate is set to δ = 0.06, and the subjective discount rate to ρ = 0.03, consistent with steady-

state values for the net return on capital and the investment to GDP ratio of 4% and 20%,

respectively. The weight of leisure in the instantaneous utility function is fixed at ψ = 2.686

so that, in steady state, agents spend 1/3 of their time working. The long-run growth rate

of the economy is assumed to be η = 2%. The parameters describing TFP dynamics are set

to ρz = 0.2052 and σz = 0.0140, in line with standard estimates from the quarterly Solow

residual for the U.S. economy (e.g., Hansen, 1985). Finally, we fix the volatility of the capital

stock at σk = 0.0104, based on the calibration in Ambler and Paquet (1994).

Each Monte Carlo sample contains 240 quarterly observations, corresponding to 60 years

of data, without measurement error. For each sample, we estimate the model parameters

using the ML approach from Section 2 and two observables, consumption and the fraction

of hours worked, yτ = [Cτ , Nτ ]
⊤. With the latent state variables given by capital and TFP,

nx ≥ 2 in all representations of the ED-SSR in Proposition 1, so nϵ ≥ nx ≥ 2 = ny, as

required to avoid stochastic singularity (indeed, Assumption 2 is satisfied at θ0).

We compare the ML estimates based on the different versions of the ED-SSR (2.4)-

(2.5), namely, the S-SSR, F-SSR, and MX-SSR (stock, flow, and mixed) representations,23

to those obtained from the misspecified state space representation resulting from a naive

Euler-Maruyama (EM) discretization of the continuous-time transition equation (2.1), i.e.,

xτ = (Inx +A(θ)h)xτ−1 +
√
hB(θ)ζτ , (5.8)

yτ = C(θ)xτ + υτ , (5.9)

using E [ζτ ] = 0, E
[
ζτζ

⊤
τ

]
= Imw for the approximation. We refer to (5.8)-(5.9) as the

EM-SSR model. It differs from the ED-SSR in that (i) the transition matrix is truncated to

first order, ignoring terms of order smaller than h in (2.6), (ii) the disturbances ignore the

temporal aggregation (2.7) of structural shocks through the system between the discrete ob-

servations, and (iii) the likelihood function is no longer exact, even for the linearized model,

since the dynamics between observations are ignored.

We group the parameters in two categories, θ =
[
θ⊤
ss,θ

⊤
exo

]⊤
, with θss = [ψ, α, δ, ρ, η]⊤,

and θexo = [ρz, σz, σk]
⊤. The first includes parameters readily identified from the model’s

steady state and available measurements, and the second the parameters characterizing the

23Since we consider a linearized model, the ED-SSR is only exact up to linearization, i.e., misspecified
relative to the nonlinear DSGE model. The detailed ED-SSR representation in Proposition 1 is provided in
Online Appendix H for each of the cases considered in the Monte Carlo analysis.
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Table 1. Parameter values (time unit one year).

Parameter Value Source / Target

Subjective discount rate, ρ 0.0300 Long-run (net) return on capital of 4%
Leisure weight, ψ, 2.6860 Average fraction of hours worked of 1/3
Capital share in output, α 0.3000 Average WN/Y of 0.7
Depreciation rate, δ 0.0600 Average I/Y of 0.2 and K/Y of 2.5
Labor-augmenting growth, η 0.0200 Average GDP growth
Mean reversion of TFP, ρz 0.2052 Persistence of Solow residual
Volatility of TFP, σz 0.0140 Volatility of Solow residual
Volatility of depreciation, σk 0.0104 Ambler and Paquet (1994)

dynamics of the exogenous processes driving the economy. For the Monte Carlo experiments,

we focus on estimation of θexo, with θss fixed at the population values from Table 1.

Remark 5.1. By Remark 2.1, all the state space representations can be rewritten such that

nx = mx = 2. For the parameter values in Table 1, Assumptions 1-4 are satisfied, with

rankR(θ0;h) = rankO(θ0;h) = 2. There are mθ = 8 parameters, of which nR = 5 are

calibrated, and dimθexo = mθ − nR = 3 is less than the upper bound in each of the order

conditions from Proposition 2, namely, 15 or 11 in (3.22) in the stock and flow measurement

cases, and 11 and 4 in (3.24) and (3.26), respectively. Further, using the accompanying

identification toolbox, we verify the rank conditions from the Proposition numerically. In

particular, in (3.21), rank∆+(θ0) = 7, which equals mθ−nR+n
2
x = 3+4, with ∆+(θ0) from

(3.18) including the Jacobian of the new exact observational equivalence conditions (3.10).

Hence, given θss,0, the parameter vector θexo is locally identified around θexo,0. ■

5.2.1 Stock data

Our first experiment assumes that all observables are sampled as stocks. Hence, the S-SSR

representation provides the exact discretization, the ED-SSR, and the exact likelihood for the

linearized model and, potentially, a better approximate likelihood for the nonlinear DSGE

model than the misspecified F-SSR and EM-SSR representations. For comparison, we con-

sider ML estimation of θexo based on all three representations. Panel A of Table 2 summarizes

the results on bias and root mean squared error (RMSE) of estimates across replications.

In terms of bias, the S-SSR based MLE outperforms the alternatives, for each parameter

generating the smallest (in magnitude) bias across methods. Both bias and RMSE are within

a reasonable range, relative to the magnitudes of the assumed true parameter values. This

indicates that although the S-SSR based likelihood is only exact for the linearized DSGE

model, it provides a useful approximation for the nonlinear model.

For each of the three methods, the largest bias occurs for the mean reversion parameter,
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Table 2. Finite sample properties I.

Panel A: Data sampled as stocks

F-SSR S-SSR EM-SSR

θexo,0 Bias RMSE Bias RMSE Bias RMSE

ρz 0.2052 0.0217 0.0317 0.0161 0.0259 -0.0177 0.0242
σz 0.014 0.0043 0.0044 -3.83e-05 0.0007 -0.0001 0.0007
σk 0.0104 0.0033 0.0033 -2.94e-05 0.0005 -0.0003 0.0006

Panel B: Data sampled as flows

F-SSR S-SSR EM-SSR

θexo,0 Bias RMSE Bias RMSE Bias RMSE

ρz 0.2052 0.0159 0.0258 0.0104 0.0228 -0.0210 0.0268
σz 0.014 -4.92e-05 0.0007 -0.0026 0.0026 -0.0026 0.0027
σk 0.0104 -3.25e-05 0.0005 -0.0019 0.0020 -0.0022 0.0022

Note: The table reports statistics for estimates of θexo from M = 10, 000 samples of quarterly con-
sumption and hours worked, covering 60 years (T = 240). Simulated measurements are sampled as
stocks in Panel A, and as flows in Panel B. F-SSR (S-SSR) refers to the state space representation
assuming measurements sampled as flows (stocks), and EM-SSR to the Euler-Maruyama discretiza-
tion. The parameters in θss are fixed at the values in Table 1. With θ̂exo,m the estimates from the

mth sample, Bias =M−1
∑M

m=1(θ̂exo,m − θexo,0), and RMSE = (M−1
∑M

m=1(θ̂exo,m − θexo,0)
2)1/2.

ρz. Using the S-SSR, ρz is above its population value, by 0.0161, or 7.8%, on average. Since

there is no discretization error, relative to the linearized model, any bias in the S-SSR case

reflects the effects of linearization and pure estimation bias, only. It is known that a posi-

tive estimation bias in the rate of mean reversion arises in the case of direct discrete-time

observations from continuous-time processes (as opposed to our latent TFP process). In the

univariate OU case, this was noted by Merton (1980), and later verified by Tang and Chen

(2009). Our results are consistent with the notion that such positive estimation bias in ρz,

corresponding to downward estimation bias in persistence, or autocorrelation, carries over

to our multivariate state space case, and contributes to the positive bias in the S-SSR case.

The bias increases in the F-SSR case, incorrectly treating the stock data as flows, and

is negative for the EM-SSR method, which introduces discretization error, even relative to

the linearized model. Again, such discretization bias, on top of the linearization and pure

estimation biases, is known to exist in estimation based on direct discrete-time observations

from diffusions. As shown by Lo (1988) in the univariate case, the discretization bias in turn

implies misspecification of the likelihood function, leading to inconsistent estimates of the
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parameters of the continuous-time model. Further, Wang et al. (2011) show that in systems

of linear SDEs, the discretization and estimation biases in persistence parameters are of

opposite sign, with the estimation bias dominating in financial applications, characterized

by data recorded at a high frequency (see also Phillips and Yu, 2005). In principle, the

discretization bias could be made arbitrarily small by sampling at sufficiently high frequency,

i.e., letting h → 0, but this is plainly impossible in macroeconomic applications. The

estimation bias is inversely proportional to the total time span, Th, and thus cannot be

reduced purely by sampling at higher frequency. The negative total bias in the EM-SSR

estimation of ρz is consistent with the notion that the negative discretization bias carries over

to our multivariate state space case and, at typical macroeconomic sampling frequency, more

than offsets the positive linearization and estimation bias. The latter bias is non-negligible in

the S-SSR case, hence further reinforcing that the negative discretization bias in the EM-SSR

case is of considerable (indeed, dominating) magnitude in the macroeconomic setting.

Turning to the diffusion coefficients, σz and σk, the S-SSR method exhibits virtually no

bias. The misspecified F-SSR produces biases that are orders of magnitude larger, more

than 30% of true values. EM-SSR produces bias in σk, too, but smaller, at around 3%,

which may be attributed to discretization bias, given nearly zero bias in the S-SSR case.

On the other hand, EM-SSR does not induce any appreciable discretization bias in σz, i.e.,

the (small) reported bias may as well be linearization and estimation bias (S-SSR exhibits a

small bias in the same direction). It is known that the discretization bias affects the speed of

mean reversion, ρz, more severely than the diffusion parameter, σz, for observed processes.

Our results suggest that also the relative importance of the discretization biases in mean

reversion and diffusion coefficient carries over to our multivariate state space case.24

While the F-SSR produces largest bias and RMSE for each parameter, RMSE for S-

SSR and EM-SSR are of similar magnitude, and for ρz in fact smallest in the EM-SSR case.

Indeed, the standard deviation of the ρz estimates is greater for S-SSR (0.0203) than for EM-

SSR (0.0165). This result for our multivariate state space case is again in line with those

for observed univariate diffusions (see Wang et al., 2011). Thus, as illustrated in Panel A of

Figure 2, showing the finite sample distributions of estimates, the methods seem to compete

against a bias-variance trade-off for ρz, with S-SSR exhibiting less bias than EM-SSR, but

greater variability. With respect to σz and σk, the standard deviations are low and, although

highest for F-SSR and lowest for EM-SSR, the difference across methods is negligible, and

the F-SSR standard deviations are swamped by the large biases in RMSE.

24In Online Appendix J, we illustrate the discretization bias using the log-likelihood profile for each
parameter. The maximum of the EM-SSR based likelihood function is located to the left of the true value.
This downward bias is most pronounced for ρz, but also affects the diffusion coefficients.
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Figure 2. Finite sample distribution of parameter estimates. The figure shows the distributions
of θ̂exo across M = 10, 000 samples of consumption and hours worked, using the S-SSR, F-SSR,
and EM-SSR methods. Each sample includes T = 240 quarterly observations generated from the
assumed true DGP. The data are sampled as stocks in Panel A, and as flows in Panel B.

Our conclusions are robust to using alternative observables, such as aggregate output and

hours worked, or aggregate consumption and aggregate output.25 In the absence of measure-

ment error, the various bivariate series are equally informative. Moreover, our findings are

robust to estimation of more parameters. In Online Appendix I, we estimate the discount

rate, ρ, and the growth rate, η, along with θexo. The additional parameters were included

after verifying our rank and order conditions for local identification.

5.2.2 Flow data

The second experiment assumes that all observables are instead sampled as flows. In this

case, the F-SSR provides the ED-SSR and the exact likelihood for the linearized model and,

potentially, the best approximate likelihood for the nonlinear DSGE model. The S-SSR and

25The results are available on request.
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EM-SSR are misspecified and expected to exhibit temporal aggregation bias in case of flow

variables, because they ignore the integral nature of measurements. Such temporal aggre-

gation bias adds to the linearization and estimation biases and, in the EM-SSR case, the

discretization bias, as well. Panel B of Table 2 reports the results of ML estimation.26

For ρz, the directions of bias agree with those for stock data, suggesting that the results

on positive estimation bias for all three methods, and a larger negative discretization bias

for EM-SSR, carry over to the case of flow data. For F-SSR, the bias amounts to about 7.8%

in the flow case, closely corresponding to that of S-SSR in the stock case. For EM-SSR, the

bias increases to 10.2% in magnitude, against 8.6% in the stock case, presumably reflecting

additional temporal aggregation bias. RMSE and variability are comparable across methods.

The distributions of estimates are displayed in Panel B of Figure 2. For flow data,

the bias-variance trade-off is present for all parameters, with more variability in the better

centered distributions. The F-SSR method exhibits virtually no bias for the diffusion coef-

ficients, σz and σk. In contrast, using the misspecified S-SSR and EM-SSR methods with

flow data introduces substantial downward biases, of the order 20%, compared to less than

1% for stock data. These biases completely dominate the associated RMSEs in Table 2,

Panel B, and the latter far exceed those of F-SSR. For S-SSR, the increase in bias cannot be

attributed to discretization error, and so must be due to temporal aggregation bias. The re-

sults suggest that ignoring the state space representation that accommodates the flow nature

of measurements comes at a cost in terms of properties of estimates. Although the exact state

space representation for flows is slightly more complicated than that for stocks and the EM

approximation, the benefits of pursuing it seem worthwhile in the context of DSGE models.

5.2.3 Mixed stock-flow data

The final experiment considers the case where the vector of observables consists of a mixture

of stocks and flows. Thus, the MX-SSR method provides the ED-SSR for the linearized

model. In a first exercise, we include aggregate consumption as the flow variable, and the

real interest rate as the stock variable, yτ = [Cτ , rτ ]
⊤. In a second exercise, we include hours

worked as an additional flow variable, so yτ = [Cτ , Nτ , rτ ]
⊤.27 In this case, we also study

the effects of adding iid measurement errors, since the number of observables exceeds the

number of reduced-form disturbances. The results are summarized in Table 3.

26Again, results are consistent across different combinations of observables. We also considered represen-
tations using the EM approximation (5.8) to the transition equation along with alternative measurement
equations adjusted to capture the flow nature of the data. The Monte Carlo evidence revealed poorer
performance than for the correctly specified state space representation. Results are available on request.

27We extend the matrix C(θ) in (5.7) to include the (log-linear) equilibrium gross real interest rate as a
function of the state variables. This additional equation is derived in Online Appendix G.
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Table 3. Finite sample properties II.

Panel A: C sampled as flow, r sampled as stock

MX-SSR F-SSR S-SSR EM-SSR

θexo Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ρz 0.2052 0.0276 0.0434 0.3091 0.3212 0.1881 0.1976 0.1222 0.1304
σz 0.0140 0.0002 0.0008 0.0026 0.0027 -0.0011 0.0013 -0.0018 0.0019
σk 0.0104 0.0001 0.0006 0.0033 0.0034 0.0003 0.0006 -3.38e-05 0.0005

Panel B: C and N sampled as flows, r sampled as stock

MX-SSR F-SSR S-SSR EM-SSR

θexo Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ρz 0.2052 0.0141 0.0232 0.0237 0.0304 0.0194 0.0269 -0.0043 0.0165
σz 0.0140 -4.32e-05 0.0007 -0.0001 0.0007 -0.0026 0.0027 -0.0027 0.0028
σk 0.0104 -2.39e-05 0.0005 -9.21e-06 0.0013 -0.0019 0.0020 -0.0022 0.0022
συr 0.0050 0.0018 0.0043 0.0101 0.0108 0.0101 0.0109 0.0104 0.0111

Note: The table reports statistics for estimates of θexo from M = 10, 000 samples of quarterly
consumption, C, hours worked, N , and interest rates, r, covering 60 years (T = 240). Panel A
uses C and r for estimation. Panel B uses C, N , and r, allowing for iid measurement error υr in
r. The parameters in θss are fixed at the values in Table 1. With θ̂exo,m the estimates from the

mth sample, Bias =M−1
∑M

m=1(θ̂exo,m − θexo,0), and RMSE = (M−1
∑M

m=1(θ̂exo,m − θexo,0)
2)1/2.

Overall, the MX-SSR method outperforms the misspecified alternatives (F-SSR, S-SSR,

and EM-SSR) in terms of bias and RMSE. From Panel A, the MX-SSR biases for bivariate

data without measurement error are small and in line with those for pure stock or flow

data, using the correct representation in each case. In contrast, the misspecified alternatives

exhibit considerable biases, which in turn dominate RMSEs. The bias in ρz fluctuates

between 60% and 150%, while those in σz and σk increase by up to 18%, in either direction.

The deteriorating performance is attributed to misclassification of the sampling nature of

the real interest rate in the F-SSR case, and consumption in the S-SSR case.

Panel B reports results using three observables, and allowing for measurement error, υr,

in the real interest rate. Again, MX-SSR outperforms the alternatives. Bias and RMSE in

the additional parameter συr are small for MX-SSR, and an order of magnitude larger for

the other methods. Relative to Panel A, the additional information from including Nτ data,

while adding one parameter for estimation, συr , reduces bias and RMSE for all structural

parameters in the MX-SSR and F-SSR cases, but only for ρz in the S-SSR and EM-SSR

cases, with the negative discretization bias resurging in the latter. Overall, our results show
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that the benefits of correct state space representation extend to the mixed stock-flow case.

5.3 Structural shocks

Next, we evaluate the accuracy of the approach in Section 4 to recover the structural shocks

at measurement times, using (4.9). To control for estimation uncertainty and separate ef-

fects, we refrain from using the ML estimates, and instead compute our approximations

conditional on the true DGP, fixing all parameters at the values in Table 1. We employ the

same simulated data sets on consumption and hours worked as in the Monte Carlo exercises.

In (4.9), the matrix H(θ) is defined as h1/2H(θ;h), with H(θ;h) given by (4.3) for the S-SSR

and F-SSR methods, and simply by B(θ) for the EM-SSR.

To gain some intuition on the mechanics of our approach, Figure 3 displays the structural

shocks to the capital stock (top exhibits) and TFP (bottom exhibits) for the first eight years

of a given simulated sample. Left exhibits (a) show the approximated shocks, ũk,τ and ũz,τ ,

recovered by each of the three methods, and the true underlying structural shocks, uk,τ and

uz,τ , denoted with a ♢, for the case of stocks. Right exhibits (b) present the similar for flows.

For the particular sample used, the method performs remarkably well in the case of stock

data, conditional on correct state space representation, S-SSR. The somewhat poorer perfor-

mance of F-SSR and EM-SSR is driven by the misspecification. While the time aggregation

imposed by F-SSR alters the weighting scheme of the structural shocks over any given time

interval, the EM-SSR disregards all model-based information between measurements when

computing the covariance matrix. For flow data, EM-SSR produces the poorest among the

three approximations, with the other two about equally accurate.

To better understand the quality of the approximations, we repeat the exercise on all

M = 10, 000 samples. The results are summarized in Figure 4, where we plot the mean

squared error (MSE) and its dispersion across replications. Several conclusions emerge.

First, the ED-SSR (S-SSR for stocks, F-SSR for flows) always outperforms the other two

methods, both in terms of average and variability of MSE, with EM-SSR exhibiting poorest

performance in all cases. Second, for each shock (capital and TFP), MSE is larger for flows

than for stocks, except in the F-SSR case. Third, for stocks, MSE for shocks recovered by the

S-SSR method is nearly zero. In contrast, for flows, F-SSR does not produce near-zero MSE.

To understand this, note that (4.6) for the RBC model from Section 5.1 is a square system

(2× 2) in the stock case, and rectangular (4× 2, cf. the ED-SSR in Proposition 1) for flows.

With more equations than unknowns in the latter case, some are inevitably solved with error.
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Figure 3. Structural shocks. The figure shows the time series of structural shocks to TFP, ũz, and
the capital stock, ũk, recovered from a simulated sample of consumption, C, and hours worked,
N . Simulated measurements are sampled as stocks in Exhibit (a), and as flows in Exhibit (b).

6. Empirical illustration

We provide an empirical illustration of the ML estimation method of Section 2, and of the

structural shock recovery of Section 4, using U.S. data. We estimate the RBC model of

Section 5 using quarterly data on aggregate consumption and the fraction of hours worked

over the period from 1960:Q1 through 2019:Q4. Both variables are obtained from the Fed-

eral Reserve Economic Data (FRED) database. Aggregate consumption is measured by

monthly nominal personal consumption expenditures (PCE), deflated by the corresponding

monthly price index (PCEPI). Consumption at quarterly frequency is computed by aggregat-

ing monthly real expenditures over the quarter. Quarterly hours are those worked by wage

and salary workers on nonfarm payrolls (TOTLQ). All variables are transformed to per-

capita values using the civilian non-institutional population aged 16 and over (CNP16OV)

from the U.S. Bureau of Labor Statistics. With the exception of population, all variables

are seasonally adjusted. We assume that the observed variables are trending exponentially

at a constant growth rate of 2% per year, reflecting long-run economic growth.

In a second exercise, we use the fitted residuals (smoothed reduced-form disturbances,

ητ ) to recover the structural shocks at measurement times, uτ , and from these build a his-

torical shock decomposition of the observed variables. This exercise is usually employed in

economic policy circles to build narratives around the sources of past economic fluctuations.

Other potential applications include impulse-response analysis, and forecast error variance

decompositions. Third, we conduct ML estimation based on a state space representation

33



(a) Stock variables (b) Flow variables

Figure 4. Approximation errors in recovered structural shocks. The figure shows distributions
of mean squared error (MSE) between the true (simulated) structural shocks and their recovered
(smoothed) counterparts. Each boxplot represents the distribution of MSE across replications.
Results are shown for data sampled as stocks in Exhibit (a), and as flows in Exhibit (b).

that accommodates observations at mixed frequencies, using monthly (rather than quar-

terly) data on aggregate real consumption, along with the quarterly data on hours worked.

Finally, we expand the data set with quarterly observations on the real interest rate, mea-

sured by the nominal 3-month Treasury bill rate (TB3MS) from FRED, and deflated using

the PCEPI. Observations are end-of-quarter values, so we regard them as stock measure-

ments. Using this additional variable, we conduct ML estimation for the case of a mixture

of stock and flow measurements. All data series are shown in Online Appendix J.

6.1 ML estimation

As in the Monte Carlo experiments in Section 5, we report ML estimates of θexo, while

fixing θss at the values in Table 1. We estimate the model with and without allowance for

iid measurement errors, using both the F-SSR and S-SSR based methods, as well as the

EM-SSR, hence allowing us to remain agnostic about the way in which data are sampled.

Table 4 reports empirical results based on quarterly data on aggregate consumption and

hours worked. Estimated standard errors (in parentheses) are computed using the wild

bootstrap algorithm, with B = 1, 000 samples (see Angelini et al., 2021).28 The bootstrap is

chosen over asymptotic formulas to better accommodate the finite-sample nature of the data,

particularly heteroskedasticity of the prediction errors, and avoids computation of numerical

derivatives at estimates near the boundary of the domain. At each reported parameter vector,

nonsingularity, minimality, and local identification (Assumptions 2 and 4, and Proposition 2)

are verified as in Remark 5.1, using the accompanying identification toolbox.

28Assumptions 1–3,A4′, and 5 in Angelini et al. (2021) are verified prior to implementation.
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Table 4. ML estimates (common frequency).

Without measurement error With measurement error

θexo F-SSR S-SSR EM-SSR F-SSR S-SSR EM-SSR

ρz 0.0549 0.0646 0.0584 0.0633 0.0651 0.0591
(0.0220) (0.0251) (0.0229) (0.0324) (0.0362) (0.0351)

σz 0.0101 0.0093 0.0093 0.0111 0.0101 0.0101
(0.0010) (0.0009) (0.0009) (0.0013) (0.0012) (0.0012)

σk 0.0142 0.0132 0.0132 0.0163 0.0152 0.0151
(0.0013) (0.0011) (0.0011) (0.0017) (0.0017) (0.0016)

Note: The table reports ML estimates of θexo using quarterly data on aggregate consumption and
hours worked for the U.S. from 1960:Q1 through 2019:Q4, with θss fixed at the values in Table 1.
Wild bootstrap standard errors computed from B = 1, 000 samples in parentheses.

From the results, the parameters representing the driving forces behind the RBC model

are similar across specifications, and quite reasonable. In the absence of measurement error,

mean reversion of TFP is estimated at ρz = 0.0549 by the F-SSR method, 0.0646 by S-

SSR, and 0.0584 by EM-SSR. These estimates imply a first order autocorrelation coefficient

for quarterly TFP, exp(−ρz/4), between 0.9840 and 0.9864. Our results are close to the

quarterly estimates reported in Ireland (2004) and Malley and Woitek (2010) for the U.S.

economy, and thus consistent with arguments by King et al. (1988) and Hansen (1997) that

TFP shocks should be highly persistent for the RBC model to match key features of U.S.

data.29 Further, the point estimates of the instantaneous volatility of TFP shocks, σz, imply

a quarterly conditional volatility, σz
√

(1− exp(−2ρz/4))/2ρz , between 0.46% and 0.50%,

again close to values reported by the same authors, and of the same order of magnitude

as those commonly used in the RBC literature. Moreover, our estimates suggest that the

variability of shocks to the capital stock is greater than that in Ambler and Paquet (1994),

and greater than for TFP shocks.30 In particular, the estimates of σk imply a volatility per

quarter (≈
√

(1/4)σk) between 0.66% and 0.81%. Comparing across methods, F-SSR pro-

duces higher estimates of σz and σk than S-SSR and EM-SSR, in line with the Monte Carlo

evidence (positive bias for F-SSR versus negligible bias for the other methods in Panel A of

Table 2 and Figure 2, negligible versus negative bias in Panel B.).31

To assess the effects of iid measurement errors in the ML estimation, we fix their stan-

29The persistence of TFP in Table 1 is based on quarterly autoregressions for the Solow residual, with
coefficients estimated at around 0.95, whereas we use state space methods to estimate ρz directly in Table 4.

30In contrast, for the parameter values in Table 1, σz exceeds σk.
31In Online Appendix I, we report the results from a battery of tests assessing the univariate and multi-

variate normality of the one-step-ahead prediction errors for the measurements in the F-SSR approach across
different subsets of the data used in the estimation. The results are generally consistent with Gaussianity.
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Figure 5. Historical shock decomposition (F-SSR method). The figure shows the separate historical
contributions of the structural shocks to capital (demand) and technology (supply, TFP) recovered
by the F-SSR method from the observed measurements of consumption and hours worked over the
period from 1960:Q2 through 2019:Q4. The black solid line in the upper panel represents annual
consumption growth rates, and that in the lower panel quarterly percentage deviations of hours
worked from its steady state (n⋆ = 33%). The light gray vertical bands indicate NBER recessions.

dard deviations to the quarterly estimates reported in Ireland (2004, Table 6), namely,

συC = 0.0061 for aggregate consumption, and συN = 0.0073 for hours.32 Our results (right

side of Table 4) suggest that allowing for measurement error does not have sizable effects on

the structural parameter estimates. Differences are small, relative to standard errors.

32This corresponds to the assumption on Συ,h in Proposition 2.(c).
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6.2 Historical shock decomposition

Given the ML estimates, we employ the approach of Section 4 to recover the structural shocks

at measurement times. We then investigate their contribution to the observed series through

the lens of the continuous-time RBC model, based on the historical shock decomposition

HSD(yτ − C(θ;h)A(θ;h)τ−1x0 , i ) = D(θ;h)H(θ)ũi,τ

+ C(θ;h)
τ−2∑
j=0

A(θ;h)jB(θ;h)H(θ)ũi,τ−1−j, (6.1)

computed from the ABCD representation (2.12)-(2.13) associated with the F-SSR.33 Here,

i = k, z indicate the components attributable to shocks to the capital stock and TFP, respec-

tively, of the evolution of observables around the conditional trend, given the initial state

vector x0. The derivation of (6.1) is provided in Online Appendix K.

The top panel of Figure 5 displays the contributions of ũk and ũz to annual consumption

growth, and the bottom panel their contributions to quarterly deviations of hours worked

from their steady state value. Any discrepancy between the sum of the bars and the observed

series (solid line) can be attributed to approximation errors in backing out the structural

shocks (4.9). For aggregate consumption, when reporting the historical decomposition of the

annual growth rates, although the model is estimated using quarterly data, the shift in fre-

quency is achieved seamlessly, due to the frequency invariance of the structural parameters in

the continuous-time model. For parameters estimated at a given frequency, it is straightfor-

ward to recalibrate the ABCD representation to any frequency of interest, in this case annual.

If shocks to TFP are interpreted as “aggregate supply shocks,” and shocks to the cap-

ital stock as “aggregate demand shocks,” the decomposition in Figure 5 suggests that the

U.S. business cycle over the period from 1960:Q2 through 2019:Q4 mainly has been driven

by aggregate supply shocks to firm productivity, both during expansions and contractions.

In contrast, the short-run variability of hours worked, relative to their long-run value, has

mostly reflected aggregate demand shocks. This corroborates earlier evidence on the limited

power of TFP shocks to explain the behavior of hours worked in RBC models, in particular

their unconditional variance (see, e.g., Cooley and Prescott, 1995, and Ireland, 2004).

6.3 Mixed-frequency estimation

Here, we estimate the same parameters as in Section 6.1, now using monthly (rather than

quarterly) frequency data on aggregate consumption, along with the quarterly observations

33Historical decompositions using S-SSR and EM-SSR are available in Online Appendix K.
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Table 5. ML estimates (mixed frequencies).

Without measurement error With measurement error

θexo F-SSR S-SSR EM-SSR F-SSR S-SSR EM-SSR

ρz 0.0559 0.0772 0.0749 0.0766 0.0942 0.0917
(0.0234) (0.0310) (0.0294) (0.0534) (0.0610) (0.0590)

σz 0.0108 0.0089 0.0089 0.0104 0.0097 0.0097
(0.0008) (0.0006) (0.0006) (0.0009) (0.0009) (0.0009)

σk 0.0156 0.0134 0.0134 0.0149 0.0143 0.0142
(0.0010) (0.0009) (0.0009) (0.0010) (0.0011) (0.0011)

Note: The table reports ML estimates of θexo using monthly data on aggregate consumption and
quarterly data on hours worked for the U.S. from 1960 through 2019, with θss fixed at the values
in Table 1. Wild bootstrap standard errors computed from B = 1, 000 samples in parentheses.

on hours worked. In this mixed-frequency case, the state space representations are adjusted

accordingly. For observations sampled as stocks, we simply write the S-SSR and EM-SSR

representations in terms of the variable(s) observed at the highest frequency, then modify the

filtering algorithm to accommodate the corresponding missing observations on variable(s) ob-

served at lower frequencies (see Durbin and Koopman, 2012, Sec. 4.10). A similar approach

is adopted for data sampled as flows. In this case, we extend the state vector of the F-SSR

with additional deterministic variables that allow keeping track of the time aggregation at

high frequencies of the variable(s) sampled at lower frequencies.34

The mixed-frequency ML results for θexo in Table 5 closely mirror those for common

quarterly frequency in Table 4, especially when possible measurement error is not accounted

for. When it is, point estimates of ρz increase by about one half in the mixed-frequency case,

and standard errors by two-thirds, with the remaining parameters relatively unaffected.

To explore the frequency-invariance property of the parameter estimates based on the

continuous-time model, Panel A of Table 6 reproduces the estimates obtained by the F-

SSR method using common and mixed-frequency data, along with t-statistics for the null

hypothesis that the parameters coincide, with standard errors of the differences (the denom-

inators) calculated as if the estimates were independent. As they are not, we compute the

lower bound on the correlation between estimates, ϱ, for the null to be rejected at level 10%.

Rather high correlations would be required to reject, so the results suggest that our approach

produces estimates that are statistically identical, regardless of the data frequency used. For

ρz, the dash in the last column indicates that we fail to reject the null irrespective of the

correlation between estimates, i.e., for all ϱ ∈ [−1, 1]. In particular, the smallest possible

standard error of the difference, at ϱ = 1, yields a t-statistic of −0.7143.

34The details of the derivations of the mixed-frequency representations are in Online Appendix H.
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Table 6. Frequency invariance of continuous time estimates.

Panel A: ML estimates from Tables 4 and 5

θexo M.F. F-SSR Q. F-SSR t-stat ϱ

ρz 0.0559 0.0549 -0.0318 -
(0.0234) (0.0220)

σz 0.0108 0.0101 -0.5799 0.9096
(0.0008) (0.0010)

σk 0.0156 0.0142 -0.8711 0.7335
(0.0010) (0.0013)

Panel B: Smoothed TFP using estimates from Table 5

Dataset βh ρz ϱM=Q ϱ•=Y

Monthly TFP 0.9966 0.0410 0.9966 0.7423
(0.0032) (0.0386)

Quarterly TFP 0.9878 0.0493 0.8064
(0.0105) (0.0423)

Annual TFP 0.8862 0.1208
(0.0617) (0.0697)

Note: Panel A reports ML estimates (with bootstrap standard errors) of θexo using the F-
SSR method, along with t-statistics comparing common-frequency and mixed-frequency estimates.
Panel B shows OLS estimates of an AR(1) process for TFP at different frequencies, and the as-
sociated continuous-time mean reversion. Standard errors in parentheses. The variable ϱ is the
minimum correlation between estimates required to reject the null of equality at level 10%.

We construct smoothed time series for latent capital and TFP at the monthly (h = 1/12),

quarterly (h = 1/4), and annual (h = 1) frequencies. Quarterly latent series using quarterly

consumption and hours as measurements are shown in the Online Appendix, along with

monthly latent series based on monthly consumption and quarterly hours. In general, the

resulting series are very similar, whether using common or mixed-frequency data and state

space representations, hence reinforcing the value of the mixed-frequency approach.

Estimates from a standard discrete-time model could, if desired, be transformed to the

underlying frequency-invariant continuous-time model parameters, but results might not

agree with those obtained by estimating the continuous-time model directly, as in our case.

To illustrate, we estimate the AR(1) process ẑt+1 = βhẑt + et by Ordinary Least Squares

(OLS), for each of the constructed TFP series. Using β̂h for each frequency h, we recover the

underlying continuous-time parameter as ρ̂z = − log(β̂h)/h. In Panel B of Table 6, we report

the OLS estimates β̂h, with standard errors in parentheses, and the resulting estimates ρ̂z,

with standard errors computed using the delta method. The last two columns report the

minimum pairwise correlation between estimates of ρz from samples of different frequencies
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Table 7. ML estimates (mixed stock-flow sampling).

Measurement error in r Measurement error in C, N , and r
θexo MX-SSR F-SSR S-SSR EM-SSR MX-SSR F-SSR S-SSR EM-SSR

ρz 0.2192 0.1990 0.1896 0.1794 0.2720 0.2480 0.2203 0.2080
(0.0431) (0.0402) (0.0475) (0.0395) (0.0742) (0.0741) (0.0799) (0.0724)

σz 0.0093 0.0092 0.0089 0.0087 0.0102 0.0101 0.0095 0.0092
(0.0009) (0.0009) (0.0008) (0.0008) (0.0010) (0.0011) (0.0010) (0.0010)

σk 0.0153 0.0151 0.0138 0.0138 0.0168 0.0167 0.0153 0.0153
(0.0012) (0.0012) (0.0011) (0.0011) (0.0017) (0.0018) (0.0017) (0.0018)

συr 0.1157 0.1280 0.1294 0.1311 0.1045 0.1168 0.1199 0.1216
(0.0075) (0.0088) (0.0086) (0.0089) (0.0074) (0.0082) (0.0083) (0.0089)

Note: The table reports ML estimates of θexo and συr using quarterly data on aggregate consump-
tion, C, hours worked, N , and the real interest rate, r, for the U.S. from 1960:Q1 through 2019:Q4.
The remaining parameters, θss, are fixed at the values in Table 1, and the standard deviations of
the measurement errors on C and N are calibrated to συC = 0.0061 and συN = 0.0073. F-SSR,
S-SSR, and MX-SSR refer to the state space representations assuming measurements sampled as
flows, stocks, and a mixture of flows and stocks, respectively, and EM-SSR to the Euler-Maruyama
discretization. Wild bootstrap standard errors computed from B = 1, 000 samples in parentheses.

(monthly vs. quarterly, monthly vs. annual, and quarterly vs. annual) needed to reject the

null of equality at the 10% level. Researchers estimating monthly, quarterly, and annual

frequency discrete-time models would back out continuous-time ρz values ranging between

0.04 and 0.12. Estimates are likely strongly correlated, and if the correlation exceeds 80%,

both monthly and quarterly frequency analyses lead to results that are statistically different

from annual frequency analysis. This is in contrast to the conclusion from Panel A, that direct

estimation of the continuous-time model is robust to the use of different data frequencies.

Overall, we conclude that the frequency-invariance of model parameters and the ro-

bustness to differences in (possibly mixed) observation frequencies in data sets available in

applications are desirable features of our approach.

6.4 Mixed stock-flow sampling estimation

Finally, we include quarterly stock measurements on the (gross) real interest rate, r. To

avoid stochastic singularity, we allow for iid measurement errors. ML results are presented

in Table 7. The left panel reports results allowing for measurement error only in r, with

standard deviation συr estimated along with the structural parameters, θexo. The right

panel reports results allowing also for measurement errors in quarterly consumption and

hours worked, with standard deviations fixed at the same values as in Table 4.

Including information on the real interest rate in the MX-SSR framework, treating r as
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a stock and C, N as flows, pushes the estimate of the speed of mean reversion of TFP up,

from around 0.06 in Table 4 to 0.22 in Table 7, allowing for measurement error in r, and

0.27 when allowing for measurement error in all three observables. The larger estimate of

ρz is consistent across state space representations, whereas σz and σk remain close to earlier

estimates. Finally, the large and significant estimates of συr indicate the existence of a wedge

between the model’s implied rental rate of capital and the measured 3-month T-bill yield.

7. Conclusions

Our exact discrete state space representation in conjunction with the likelihood function

based on the Kalman filter allows assessing whether the parameters of the underlying DSGE

model cast in continuous time are locally identified. If they are, structural shocks at mea-

surement times can be backed out from the reduced-form residuals. The Monte Carlo and

empirical analyses indicate that our approach provides accurate parameter estimates and pre-

dicted structural shocks, based on measurements that can include a combination of stocks

and flows, possibly observed at mixed frequencies, and that performance deteriorates if

stocks are misclassified as flows, or vice versa. Researchers using instead a DSGE model

directly formulated in discrete time could transform the received estimates to parameters

corresponding to frequencies other than that of the observations, including infinite frequency

(continuous-time) parameters, but the result for any frequency of interest would depend on

the actual data frequency. In contrast, the result of mapping our estimates to the particular

frequency of interest is robust to different data frequencies—including mixed frequencies.

Further, our approach outperforms that relying on the naive Euler-Maruyama discretiza-

tion. This is particularly relevant in macroeconomic applications, with data at relatively low

frequencies (e.g., monthly, quarterly, annual).

While our approach works well for both the exact nonlinear and the corresponding lin-

earized DGP, comparison with nonlinear filtering would be of interest in the former case. So

would mixtures of observed and latent state and control variables, as well as the analysis of

heterogeneous agent models. We leave these as exciting avenues for future research.
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A. Proofs

A.1 Proof of Proposition 1

The proof is constructed in four steps.

Step 1: State equation for stock variables. For x (t0) = x0 given, and A(θ) and B(θ)

time-invariant matrices, the solution to the linear SDE in (2.1) is given by

x(t) = exp(A(θ)h)

[
x(t0) +

ˆ t

t0

exp(A(θ)(t0 − u))B(θ)dw(u)

]
,

with h = t − t0. By setting t0 = tτ−1 and t = tτ , the solution for {x(tτ )}τ∈Z can be

written as

x(tτ ) = Ah(θ)x(tτ−1) + η(tτ ) , (A.1)

where

η(tτ ) =

ˆ tτ

tτ−1

exp (A(θ)(tτ − u))B(θ)dw(u) , (A.2)

with E[η(tτ )] = 0. By the Itô isometry,

E[η(tτ )η(tτ )⊤] =
ˆ tτ

tτ−1

exp (A(θ)(tτ − u))B(θ)B(θ)⊤ exp
(
A(θ)⊤(tτ − u)

)
du ,

which is time-invariant, i.e., only depending on h = tτ − tτ−1. Therefore, a change of

variable shows that

E[η(tτ )η(tτ )⊤] =
ˆ h

0

exp (A(θ)(h− u))B(θ)B(θ)⊤︸ ︷︷ ︸
:=Σ(θ)

exp
(
A(θ)⊤(h− u)

)
du ,

corresponding to (2.9). Note that η(tτ ) is serially uncorrelated, i.e., E[η(tτ )η(tτ−ℓ)
⊤] =

0, ∀ℓ ̸= 0. Now, for stock variables, let xs
τ = x (tτ ) in (A.1), and ηs

τ = η (tτ ) in (A.2).

This completes the stock portion of the transition equation (2.4), (2.7).

Step 2: State equation for flow variables. Introduce the time tτ cumulator variable

xf (tτ ) =

ˆ tτ

tτ−1

x(u)du =

ˆ h

0

x(tτ−1 + u)du ,

measuring the cumulated values of the state variables over the time interval [tτ−1, tτ ],

with the dynamics given in (2.1). The realization at time tτ of the continuous-time state

3



vector is equivalent to a stock measurement, x(tτ ) = xs(tτ ). By (A.1),

xf (tτ ) =

[ˆ h

0

exp(A(θ)u)du

]
xs(tτ−1) + ηf (tτ )

= A(θ)−1(Ah(θ)− I)xs(tτ−1) + ηf (tτ ) , (A.3)

where the last equality uses the fact that, under Assumption 1, the matrix A(θ) is

nonsingular to compute the definite integral. In addition,

ηf (tτ ) =

ˆ h

0

ˆ tτ−1+u

tτ−1

exp(A(θ)(tτ−1 + u− r))B(θ)dw(r) du

is a vector of normally distributed reduced-form disturbances, with mean E
[
ηf (tτ )

]
= 0,

and variance-covariance matrix E
[
ηf (tτ )η

f
τ (tτ )

⊤] = Σηf ,h(θ). By redefining the bounds

of the inner stochastic integral, and exchanging the order of integration, we may write

ηf (tτ ) =

ˆ h

0

(
A(θ)−1(exp(A(θ)(h− r))− I)B(θ)

)
dw(tτ−1 + r) .

Setting u = tτ−1 + r, and using the fact that h = tτ − tτ−1, we conclude that

ηf (tτ ) =

ˆ tτ

tτ−1

A(θ)−1(exp(A(θ)(tτ − u))− I)B(θ)dw(u) . (A.4)

Now let xf
τ = Sf

xx
f (tτ ), η

f
τ = Sf

xη
f (tτ ), and the flow portion of the transition equation

(2.4), (2.7) follows.

Step 3: Measurement equation for stock variables. Evaluating (2.2) at measurement

times,

ys
τ = ys (tτ ) = Ss

yC(θ)x (tτ ) = Ss
yC(θ)xs

τ . (A.5)

Step 4: Measurement equation for flow variables. The cumulator variable is

yf
τ =

ˆ tτ

tτ−1

yf (u)du = Sf
y

ˆ tτ

tτ−1

C(θ)x(u)du = Sf
yC(θ)xf (tτ )

= Sf
yC(θ)Sf⊤

x Sf
xx

f (tτ ) = Sf
yC(θ)Sf⊤

x xf
τ , (A.6)

where the second equality uses (2.2). Combining (A.5) and (A.6) yields the measure-

ment equation (2.5) for stock and flow measurements. Here, the non-zero columns of

Sf
yC(θ) correspond to those of the latent variables that yf

τ depends on, namely, those

in xf
τ , whereas Sf⊤

x xf
τ returns an mx-vector supplementing xf

τ with zeroes in positions

corresponding to the remaining (zero) columns of Sf
yC(θ) (so dimensions match).

To compute the remaining blocks E[ηs
τ η

f⊤
τ ] and E[ηf

τ η
f⊤
τ ] of the covariance matrix (2.8),

we again apply the Itô isometry, with η(tτ ) and ηf (tτ ) given by (A.2) and (A.4), respec-
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tively, then use ηs
τ = η (tτ ), η

f
τ = Sf

xη
f (tτ ). ■

A.2 Proof of Lemma 1

We must show that the eigenvalues of A(θ;h) lie within the unit circle.

Model with only stock state variables. AssumeA(θ) is diagonalizable,1 A(θ) = VΛV−1,

withV a square matrix with columns given by the eigenvectors ofA(θ), and Λ a diagonal

matrix with the corresponding eigenvalues along the diagonal. From Assumption 1, the

eigenvalues of A(θ) and, therefore, the elements of Λ all have negative real parts. Since

A(θ;h) = exp(A(θ)h) = V exp(Λh)V−1, the eigenvalues of A(θ;h) are the diagonal

elements of exp(Λh) = diag(eλ1h, ..., eλns
x
h), and so lie within the unit circle.

Model with stock and flow state variables. Here, nx = ns
x + nf

x. From the previous

result, the upper left block of A(θ;h) has eigenvalues within the unit circle. Given the

structure of A(θ;h), and using decoupling arguments, is evident that, for σ ∈ C, the
nonzero roots of the characteristic polynomial det(σI−A(θ;h)) are the same as those of

det(σI − exp(A(θ)h)) (see, e.g., Golub and Van Loan, 2013, Lemma 7.1.1). Indeed, let

σ(A) = {σ : det(σI−A) = 0}, and partition the discrete-time drift matrix as

A(θ;h) =

[
A11(θ;h) 0

A21(θ;h) A22(θ;h)

]
.

Then σ(A(θ;h)) = σ(A11(θ;h)) ∪ σ(A22(θ;h)). Since A22(θ;h) = 0 in the MX-SSR

model, and σ(0) = diag(0, ..., 0), it follows that A(θ;h) has ns
x eigenvalues given by eλih,

i = 1, ..., ns
x, and n

f
x eigenvalues that are exactly zero. Therefore, all eigenvalues lie within

the unit circle.

The EM-SSR model. From Assumption 1, the eigenvalues of A(θ) have negative real

part. Additionally, A(θ;h) = Ins
x
+ A(θ)h. The eigenvalues of A(θ;h) are of the type

1+λih, i = 1, ..., ns
x, which lie within the unit circle if and only if λi > −2/h, i = 1, ..., ns

x.

■

A.3 Proof of Lemma 2

(a) We must show that under Assumptions 1, 2, and 4, if there exists a full rank nx × nx

matrix Th satisfying (3.8), then δ(θℓ,Th) = δ(θ0, Inx), i.e., (3.2) applies, with δ(θ,Th)

1The matrix A(θ) is diagonalizable if either i) it has mx distinct eigenvalues; or ii) the sum of the
geometric multiplicities of its eigenvalues is equal to mx; or iii) the sum of the algebraic multiplicities of
its eigenvalues is equal to mx and, for each eigenvalue, the geometric multiplicity equals the algebraic
multiplicity. However, the assumption is not restrictive. For non-diagonalizable matrices, the exponential
can be computed using the Jordan canonical form, and the result carries over, based on a Taylor series
expansion of the matrix exponential, showing that the eigenvalues of A(θ;h) still take the form eλih,
where λi is an eigenvalue of A(θ).
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from (3.1). Clearly, under (3.8), the K(θ;h) and Σν(θ;h) parts of (3.2) are automatic.

It remains to verify the A(θ;h) and C(θ;h) parts of (3.2).

For the A(θ;h) part of (3.2), we must show that ThA(θℓ;h)T
−1
h = A(θ0;h). As the

representation is minimal, by Assumption 4, we have from the transition equation of

the state space representation (D.3) that mx = nx = ns
x, with

A(θ;h) = Ah(θ) = exp(A(θ)h) . (A.7)

It follows that

ThA(θℓ;h)T
−1
h = Th exp(A(θℓ)h)T

−1
h = exp(ThA(θℓ)T

−1
h h) = exp(A(θ0)h)

= A(θ0;h) , (A.8)

where the first and last equalities follow from (A.7), the second from the properties of

the matrix exponential, and the third from the assumption on ThA(θℓ)T
−1
h in (3.8) in

part (a) of the Lemma. Thus, the A(θ;h) part of (3.2) is satisfied.

For the C(θ;h) part of (3.2),

C(θℓ;h)T
−1
h =

[
Ss
yC(θℓ)Ah(θℓ)T

−1
h

Sf
yC(θℓ)A(θℓ)

−1(Ah(θℓ)− Ins
x
)T−1

h

]

=

[
Ss
yC(θℓ)T

−1
h ThAh(θℓ)T

−1
h

Sf
yC(θℓ)T

−1
h ThA(θℓ)

−1T−1
h (ThAh

(
θℓ)T

−1
h −ThT

−1
h

) ]

=

[
Ss
yC(θ0)Ah(θ0)

Sf
yC(θ0)A(θ0)

−1(Ah

(
θ0)− Ins

x

) ]
= C(θ0;h) ,

where the first and last equalities follow from (D.4) (as the representation is minimal,

by Assumption 4), and the third from (A.8) and the assumptions on ThA(θℓ)T
−1
h and

C(θℓ)T
−1
h in (3.8) in part (a) of the Lemma. Thus, the C(θ;h) part of (3.2) is satisfied,

too, i.e., (3.2) applies. This completes the proof of part (a) of the Lemma. We also

note that the proof of the A(θ;h) and C(θ;h) parts of (3.2) only used the A(θ) and

C(θ) parts of (3.8), not the K(θ;h) and Σν(θ;h) parts.

(b) We show that under Assumptions 1, 2, and 4, if Συ,h(θℓ) = Συ,h(θ0), and there exists

a full rank nx × nx matrix T and an orthogonal mw ×mw matrix U satisfying (3.9),

then θ0 and θℓ are observationally equivalent, i.e., (3.2) applies, with Th = T.

From the A(θ) and C(θ) parts of (3.9), the A(θ) and C(θ) parts of (3.8) are satisfied,

with Th = T, and because the proof of part (a) of the Lemma only used the A(θ) and

C(θ) parts of (3.8), not the K(θ;h) and Σν(θ;h) parts, the A(θ;h) and C(θ;h) parts
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of (3.2) follow, with Th = T.

For part (b), it therefore remains to verify the K(θ;h) and Σν(θ;h) parts of (3.2), with

Th = T. For these, we need the relation

TΣηsηf ,h(θℓ)T
⊤ = Σηsηf ,h(θ0) (A.9)

and, similarly, TΣηs,h(θℓ)T
⊤ = Σηs,h(θ0), and TΣηf ,h(θℓ)T

⊤ = ThΣηf ,h(θ0)T
⊤
h . We

verify (A.9), and the other two follow analogously.

From (2.10), with Σ(θ) = B(θ)B(θ)⊤, and Sf
x = Ins

x
in the minimal representation,

TΣηsηf ,h(θℓ)T
⊤ =

hˆ

0

uˆ

0

T exp(A(θℓ)(u− r))B(θℓ)B(θℓ)
⊤ exp(A(θℓ)

⊤r)T⊤drdu

Because U is orthogonal, this is rewritten as

hˆ

0

uˆ

0

T exp(A(θℓ)(u− r))T−1TB(θℓ)UU⊤B(θℓ)
⊤T⊤ (T⊤)−1

exp(A(θℓ)
⊤r)T⊤drdu

By the properties of the matrix exponential, this is further rewritten as

hˆ

0

uˆ

0

exp(TA(θℓ)T
−1(u− r))TB(θℓ)U (TB(θℓ)U)⊤ exp(

(
T−1

)⊤
A(θℓ)

⊤T⊤r)drdu

Using the assumptions on TA(θℓ)T
−1 and TB(θℓ)U in (3.9) in part (b) of the Lemma,

this immediately reduces to

hˆ

0

uˆ

0

exp(A(θ0)(u− r))B(θ0)B(θ0)
⊤ exp(A(θ0)

⊤r)drdu

which is Σηsηf ,h(θ0), using (2.10), and (A.9) follows.

We need two more auxiliary results, in order to verify the K(θ;h) and Σν(θ;h) parts of

(3.2). First, by (D.3), in the minimal representation, B(θ;h) =
[
Ins

x
0ns

x×ns
x

0ns
x×nυ

]
,

and by (D.5), Σϵ(θ;h) = diag
(
Ση,h(θ),Συ,h(θ)

)
, so that

B(θ;h)Σϵ(θ;h)B(θ;h)
⊤ = Σηs,h(θ) . (A.10)
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Therefore, we have the auxiliary result

TB(θℓ;h)Σϵ(θℓ;h)B(θℓ;h)
⊤T⊤ = TΣηs,h(θℓ)T

⊤ = . . .

= Σηs,h(θ0) = B(θ0;h)Σϵ(θ0;h)B(θ0;h)
⊤, (A.11)

where the first and last equality follow from (A.10), and the second from the discussion

around (A.9).

Second, from (D.4), (D.5), and (2.8), we have that D(θℓ;h)Σϵ(θℓ;h)D(θℓ;h)
⊤ is given

by

[
Ss
yC(θℓ) 0ns

y×ns
x

Ss
υ

0
nf
y×ns

x
Sf
yC(θℓ) Sf

υ

] Σηs,h(θℓ) Σηsηf ,h(θℓ) 0ns
x×nυ

Σηfηs,h(θℓ) Σηf ,h(θℓ) 0ns
x×nυ

0nυ×ns
x

0nυ×ns
x

Συ,h(θ)




C(θℓ)
⊤Ss⊤

y 0
ns
x×nf

y

0ns
x×ns

y
C(θℓ)

⊤Sf⊤
y

Ss⊤
υ Sf⊤

υ

 ,

writing Sυ =
(
Ss⊤
υ , Sf⊤

υ

)⊤
. This works out as[

Ss
yC(θℓ)Σηs,h(θℓ)C(θℓ)

⊤Ss⊤
y + Ss

υΣυ,h(θℓ)S
s⊤
υ Ss

yC(θℓ)Σηsηf ,h(θℓ)C(θℓ)
⊤Sf⊤

y + Ss
υΣυ,h(θℓ)S

f⊤
υ

Sf
yC(θℓ)Σηfηs,h(θℓ)C(θℓ)

⊤Ss⊤
y + Sf

υΣυ,h(θℓ)S
s⊤
υ Sf

yC(θℓ)Σηf ,h(θℓ)C(θℓ)
⊤Sf⊤

y + Sf
yΣυ,h(θℓ)S

f⊤
y

]
.

(A.12)

In this, the expressions of the type C(θℓ)Σηsηf ,h(θℓ)C(θℓ)
⊤ take the form

C(θℓ)Σηsηf ,h(θℓ)C(θℓ)
⊤ = C(θℓ)T

−1TΣηsηf ,h(θℓ)T
⊤ (T⊤)−1

C(θℓ)
⊤

= C(θ0)Σηsηf ,h(θ0)C(θ0)
⊤ ,

using the assumption C(θℓ)T
−1 = C(θ0) from part (a) of the Lemma, along with (A.9),

and the similar relations for Σηs,h(θℓ) and Σηf ,h(θℓ). As Συ,h(θℓ) = Συ,h(θ0) by the

assumption in part (b) of the Lemma, we conclude from the derivations that

D(θℓ;h)Σϵ(θℓ;h)D(θℓ;h)
⊤ = D(θ0;h)Σϵ(θ0;h)D(θ0;h)

⊤ . (A.13)

We have established the A(θ;h) and C(θ;h) parts of (3.2), as well as the auxiliary

results (A.9), (A.11), and (A.13). To verify the remaining K(θ;h) and Σν(θ;h) parts

of (3.2), we use that K(θ;h) and Σν(θ;h) jointly with the matrix P(θ;h) in (E.10)

solve the system (E.8)-(E.10). First, corresponding to the A(θ;h) and C(θ;h) parts of

(3.2), we adopt the ansatz

T⊤P(θℓ;h)T
⊤ = P(θ0;h), (A.14)
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which we subsequently verify. Given this, we have that

Σν(θℓ;h) = C(θℓ;h)P(θℓ;h)C(θℓ;h)
⊤ + D(θℓ;h)Σϵ(θℓ;h)D(θℓ;h)

⊤

= C(θℓ;h)T
−1TP(θℓ;h)T

⊤ (T⊤)−1
C(θℓ;h)

⊤ + D(θ0;h)Σϵ(θ0;h)D(θ0;h)
⊤

= C(θ0;h)P(θ0;h)C(θ0;h)
⊤ + D(θ0;h)Σϵ(θ0;h)D(θ0;h)

⊤

= Σν(θ0;h) , (A.15)

using (E.9) in the first and last equalities, (A.13) in the second, and (A.14) and the

C(θ;h) part of (3.2) in the third, hence verifying the Σν(θ0;h) part of (3.2). Finally,

for the Kalman gain,

TK(θℓ;h) = TA(θℓ;h)P(θℓ;h)C(θℓ;h)
⊤Σν(θℓ;h)

−1

= TA(θℓ;h)T
−1TP(θℓ;h)T

⊤ (T⊤)−1
C(θℓ;h)

⊤Σν(θℓ;h)
−1

= A(θ0;h)P(θ0;h)C(θ0;h)
⊤Σν(θ0;h)

−1

= K(θ0;h) , (A.16)

using (E.8) in the first and last equalities, and (A.14) and the A(θ;h), C(θ;h), and

Σν(θ;h) parts of (3.2) in the third, hence verifying the K(θ;h) part of (3.2). However,

the derivations (A.15) and (A.16) rely on the ansatz (A.14). Therefore, to complete the

verification result, it remains to verify the latter, using (E.10), which involves P(θ;h)

both on the left and right sides. We use what we have so far, i.e., the auxiliary result

(A.11), and (3.2), which relies on the ansatz (A.14), as well as (A.14) itself, on the right

side of (E.10), and show that the result satisfies (A.14), hence verifying the ansatz. In

detail, we have

TP(θℓ;h)T
⊤ = TA(θℓ;h)

[
P(θℓ;h)− K(θℓ;h)Σν(θℓ;h)K(θℓ;h)

⊤
]
A(θℓ;h)

⊤T⊤

+ TB(θℓ;h)Σϵ(θℓ;h)B(θℓ;h)
⊤T⊤

= TA(θℓ;h)T
−1T

[
P(θℓ;h)− K(θℓ;h)Σν(θℓ;h)K(θℓ;h)

⊤
]
T⊤

(
T⊤
)−1

A(θℓ;h)
⊤T⊤

+ TB(θℓ;h)Σϵ(θℓ;h)B(θℓ;h)
⊤T⊤

= A(θ0;h)
[
P(θ0;h)− K(θ0;h)Σν(θ0;h)K(θ0;h)

⊤
]
A(θ0;h)

⊤

+ B(θ0;h)Σϵ(θ0;h)B(θ0;h)
⊤

= P(θ0;h),

using (E.10) in the first and last equalities, and (A.11), (3.2), and (A.14) in the third.

This verifies (A.14) and, therefore, δ(θℓ,T) = δ(θ0, Inx), so that (3.2) follows, with

Th = T, and θ0 and θℓ are observationally equivalent. This completes the proof of

part (b) of the Lemma.

(c) We show that under Assumptions 1, 2, and 4, if δ(θℓ,Th) = δ(θ0, Inx), i.e., if (3.2)
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applies, for some full rank nx × nx matrix Th, then condition (3.10) follows, with

Cs(θ) = Ss
yC(θ) from (3.7).

From (D.4), the first ns
y rows of C(θ;h) are given by Ss

yC(θ)A(θ;h). The condition

on the discrete-time reaction matrix in (3.2), namely, C(θℓ;h)T
−1
h = C(θ0;h), for some

full rank nx × nx matrix Th, therefore implies

Ss
yC(θℓ)A(θℓ;h)T

−1
h = Ss

yC(θ0)A(θ0;h) . (A.17)

The left side is rewritten as

Ss
yC(θℓ)T

−1
h ThA(θℓ;h)T

−1
h = Ss

yC(θℓ)T
−1
h A(θ0;h) , (A.18)

using the first condition in (3.2), on the discrete-time transition matrix. Since the left

sides of (A.17) and (A.18) coincide, so must the right sides. As A(θ0;h) is full rank, it

follows that Ss
yC(θℓ)T

−1
h = Ss

yC(θ0), so (3.10) holds exactly.

(d) We show that under Assumptions 1, 2, and 4, if δ(θℓ,Th) = δ(θ0, Inx), i.e., if (3.2)

applies, for some full rank nx × nx matrix Th, then all conditions in (3.8) hold exactly

in the absence of aliases, and the conditions on A(·) and Cf (·) in (3.8) hold to order

of approximation O(h) in general, regardless of possible aliases (condition (3.10) on Cs

and the conditions on K, Σν in (3.8) are still exact). Clearly, under (3.2), the K(θ;h)

and Σν(θ;h) parts of (3.8) are automatic, and the Cs(θ;h) part of (3.8) follows from

part (c) of the Lemma. It remains to verify the A(θ;h) and Cf (θ;h) parts of (3.8).

As in (a) and (b), under Assumption 4, we have A(θ;h) = Ah(θ) = exp(A(θ)h), which

is (A.7) (see also (D.3)). If θ0 and θℓ are observationally equivalent, the condition on

the discrete-time transition matrix in (3.2), namely, ThA(θℓ;h)T
−1
h = A(θ0;h), for

some full rank nx × nx matrix Th, therefore takes the form

Th exp(A(θℓ)h)T
−1
h = exp(A(θ0)h) . (A.19)

Using the properties of the matrix exponential, this is recast as

exp(ThA(θℓ)T
−1
h h) = exp(A(θ0)h) . (A.20)

In the absence of aliases, the matrix exponential is injective, so (A.20) impliesThA(θℓ)T
−1
h =

A(θ0), which is the first condition in (3.8).

In general, in the potential presence of aliases, we consider (A.20) directly. Using (2.6),

this is alternatively recast as

Ins
x
+ThA(θℓ)T

−1
h h+ 1

2

[
ThA(θℓ)T

−1
h

]2
h2 + · · · = Ins

x
+A(θ0)h+

1
2
[A(θ0)]

2 h2 + . . . ,
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hence implying the n2
x approximate conditions on the continuous-time drift matrix

given by

ThA(θℓ)T
−1
h = A(θ0) +O(h) . (A.21)

This completes the proof of the portion of part (d) of the Lemma dealing with the

transition matrix (i.e., both the exact and O(h) cases).

Consider next the portion of (3.8) dealing with the reaction matrix. The remaining nf
y

rows of C(θ), beyond those covered in (c), are Sf
yC(θ), cf. (3.7). Using (D.4) again,

the corresponding nf
y rows of C(θ;h) are Sf

yC(θ)A(θ)−1(Ah(θ)− Inx). The condition

C(θℓ;h)T
−1
h = C(θ0;h) in (3.2) therefore implies

Sf
yC(θℓ)A(θℓ)

−1(Ah(θℓ)− Inx)T
−1
h = Sf

yC(θ0)A(θ0)
−1(Ah(θ0)− Ins

x
) . (A.22)

The left side is rewritten as

Sf
yC(θℓ)T

−1
h

[
ThA(θℓ)T

−1
h

]−1
(ThAh(θℓ)T

−1
h − Inx) .

As A(θ;h) = Ah(θ), and using the A(θ;h) portion of (3.2), the expression is further

rewritten as

Sf
yC(θℓ)T

−1
h

[
ThA(θℓ)T

−1
h

]−1
(Ah(θ0)− Inx) . (A.23)

As we have shown, in the absence of aliases, the first condition (on the transition

matrix) in (3.8), holds exactly, implying that (A.23) takes the form

Sf
yC(θℓ)T

−1
h A(θ0)

−1(Ah(θ0)− Inx) , (A.24)

exactly, and the result (A.21) implies that this applies to order O(h) in general. Here,

Ah(θ0)− Inx = exp(A(θ0)h)− Inx

= exp(V(θ0)D(θ0)V(θ0)
−1h)− Inx

= V(θ0) exp(D(θ0)h)V(θ0)
−1 − Inx

= V(θ0) (exp(D(θ0)h)− Inx)V(θ0)
−1 ,

where the columns of V(θ0) are given by the eigenvectors of Ah(θ0), and D(θ0) is

the diagonal matrix with the eigenvalues along the diagonal. By Assumption 1, the

eigenvalues have strictly negative real parts, so exp(D(θ0)h) − Inx is full rank and,

hence, so is Ah(θ0) − Inx . Since A(θ0) is full rank, too, again using Assumption 1,

so is A(θ0)
−1(Ah(θ0) − Inx). Hence, from (A.22), and writing the left side as (A.24),

Sf
yC(θℓ)T

−1
h = Sf

yC(θ0) in the absence of aliases, and the relation holds to order h in

general. This completes the portion of part (d) of the Lemma dealing with the reaction

matrix.
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Combining the results on the reaction matrix in (c) and (d), under observational equiv-

alence of θℓ and θ0, and since Iny = diag(Ss
y,S

f
y), we have the nymx conditions on the

optimal continuous-time reaction matrix

C(θℓ)T
−1
h = C(θ0) , (A.25)

which are exact for the first ns
y rows, and for the remaining nf

y rows hold exactly in the

absence of aliases, and to order h in general.

(e) For part (e) of the Lemma, it remains to verify that the conditions on B(θ) in (3.8)

hold exactly in the absence of aliases, with T = Th, and to order O(h) regardless of

aliases. All conditions on the four matrices in (3.2) in combination, together with the

expression for the Kalman gain K(θ;h) from (E.8), imply

ThK(θℓ;h) = K(θ0;h)

= A(θ0;h)P(θ0;h)C(θ0;h)
⊤Σν(θ0;h)

−1

= ThA(θℓ;h)T
−1
h P(θ0;h)

(
T⊤

h

)−1
C(θℓ;h)

⊤Σν(θℓ;h)
−1,

exactly. Comparing with ThK(θℓ;h) = ThA(θℓ;h)P(θℓ;h)C(θℓ;h)
⊤Σν(θℓ;h)

−1 from

(E.8), and because A(θℓ;h), C(θℓ;h)
⊤, and Σν(θℓ;h)

−1 are full rank, we conclude that

ThP(θℓ;h)T
⊤
h = P(θ0;h) . (A.26)

The conditions on C(θ;h) and Σν(θ;h) in (3.2), along with the expression for Σν(θ;h)

from (E.9), and the result (A.26) on P(θℓ;h), together imply

Σν(θℓ;h) = Σν(θ0;h)

= C(θ0;h)P(θ0;h)C(θ0;h)
⊤ + D(θ0;h)Σϵ(θ0;h)D(θ0;h)

⊤

= C(θℓ;h)T
−1
h ThP(θℓ;h)T

⊤
h

(
T⊤

h

)−1
C(θℓ;h)

⊤ + D(θ0;h)Σϵ(θ0;h)D(θ0;h)
⊤

= C(θℓ;h)P(θℓ;h)C(θℓ;h)
⊤ + D(θ0;h)Σϵ(θ0;h)D(θ0;h)

⊤.

Comparing with Σν(θℓ;h) = C(θℓ;h)P(θℓ;h)C(θℓ;h)
⊤ + D(θℓ;h)Σϵ(θℓ;h)D(θℓ;h)

⊤

from (E.9), we conclude that

D(θℓ;h)Σϵ(θℓ;h)D(θℓ;h)
⊤ = D(θ0;h)Σϵ(θ0;h)D(θ0;h)

⊤ . (A.27)

With D(θ;h) from (D.4), the left side of (A.27) takes the form (A.12), and the right

side is similar, with θ0 replacing θℓ. Therefore, from the upper left corner of condition

(A.27), and because Ss
υΣυ,h(θℓ)S

s⊤
υ = Ss

υΣυ,h(θ0)S
s⊤
υ , by the assumption in part (e) of
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the Lemma, it then follows that

Ss
yC(θℓ)Σηs,h(θℓ;h)C(θℓ)

⊤Ss⊤
y = Ss

yC(θ0)Σηs,h(θ0;h)C(θ0)
⊤Ss⊤

y . (A.28)

Using Ss
yC(θ) = Cs(θ) from (3.7), and the first ns

y exact rows of (A.25) (i.e., (3.10)),

the left side of (A.28) is

Cs(θ0)ThΣηs,h(θℓ;h)T
⊤
hC

s(θ0)
⊤ . (A.29)

Comparing with the right side of (A.28), and because the ns
y×ns

x matrix Cs(θ0) has full

column rank ns
x = nx by the assumption in part (e) of the Lemma, we conclude that

ThΣηs,h(θℓ;h)T
⊤
h = Σηs,h(θ0;h) (A.30)

holds exactly. Using (2.9), this is recast in more picturesque form as

Th

ˆ h

0

exp(A(θℓ)u)B(θℓ)B(θℓ)
⊤ exp(A(θℓ)

⊤u)duT⊤
h

=

ˆ h

0

exp(A(θ0)u)B(θ0)B(θ0)
⊤ exp(A(θ0)

⊤u)du .

Using the property Th exp(A(θℓ)u)T
−1
h = exp(ThA(θℓ)T

−1
h u) of the matrix exponen-

tial, the result in (3.8) on the continuous-time transition matrix from part (d), which

is exact in the absence of aliases, and holds to order O(h) in general, cf. (A.21), im-

plies that Th exp(A(θℓ)u)T
−1
h = exp(A(θ0)u) (exactly resp. approximately), so the

equation is

ˆ h

0

exp(A(θ0)u)ThB(θℓ)UhU
⊤
hB(θℓ)

⊤T⊤
h exp(A(θ0)

⊤u)du

=

ˆ h

0

exp(A(θ0)u)B(θ0)B(θ0)
⊤ exp(A(θ0)

⊤u)du ,

for Uh orthogonal, again exactly in the absence of aliases, and to order O(h) in gen-

eral. As exp(A(θℓ)u) is full rank, we have the nxmw conditions on the continuous-time

diffusion matrix given by

ThB(θℓ)Uh = B(θ0) ,

which are exact in the absence of aliases, and hold to order O(h) in general. This

completes the proof of part (e) of Lemma 2. ■
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A.4 Proof of Lemma 3

Following Komunjer and Ng (2011), for given h > 0, θ is locally identifiable from the

autocovariances of yτ at θ0 ∈ Θ if and only if there is no observationally equivalent θℓ

in a neighborhood of θ0, i.e., if and only if the system (3.2), namely,

δ(θℓ,Th) = δ(θ0, Inx) , (A.31)

has a locally unique solution (θℓ,Th) = (θ0, Inx), with δ from (3.1). Based on the

underlying continuous-time model, part (a) of the Lemma extends the result to δ+ from

(3.11).

(a) Assume θ is locally identifiable from the autocovariances of yτ at θ0 ∈ Θ. The

proof is by contradiction. Thus, suppose (3.12) does not have a locally unique so-

lution at (θℓ,Th) = (θ0, Inx). Clearly, (θℓ,Th) = (θ0, Inx) is a solution, so there are

other local solutions. This implies that there exists a sequence satisfying (θℓ,Tℓ) →
(θ0, Inx) as ℓ → ∞, and δ+(θℓ,Tℓ) = δ+(θ0, Inx), for all ℓ. As δ+(θ,Th) is given as

(vec
(
Cs(θ)T−1

h

)⊤
, δ(θ,Th)

⊤)⊤, by (3.11), it follows that δ(θℓ,Tℓ) = δ(θ0, Inx), for all

ℓ, with (θℓ,Tℓ) → (θ0, Inx) as ℓ→ ∞. Thus, (A.31) does not have a locally unique solu-

tion at (θℓ,Th) = (θ0, Inx). Then θ is not locally identifiable from the autocovariances

of yτ at θ0, and hence the contradiction.

For the converse, assume that the system (3.12) has a locally unique solution (θℓ,Th) =

(θ0, Inx). The proof is again by contradiction. Thus, suppose θ is not locally identifiable

from the autocovariances of yτ at θ0. Then (A.31) does not have a locally unique

solution at (θℓ,Th) = (θ0, Inx). Clearly, (θℓ,Th) = (θ0, Inx) is a solution, so there are

other local solutions. This implies that there exists a sequence satisfying (θℓ,Tℓ) →
(θ0, Inx) as ℓ→ ∞, with δ(θℓ,Tℓ) = δ(θ0, Inx), i.e., (A.31) and hence (3.2) is satisfied,

for each ℓ. Therefore, θℓ and θ0 are observationally equivalent and, by Lemma 2.(c),

this implies

Cs(θℓ)T
−1
ℓ = Cs(θ0) , (A.32)

for all ℓ. Hence, we have

δ+(θ0, Inx) =
[
vec (Cs(θ0))

⊤ , δ(θ, Inx)
⊤
]⊤

=
[
vec
(
Cs(θℓ)T

−1
ℓ

)⊤
, δ(θℓ,Tℓ)

⊤
]⊤

= δ+(θℓ,Tℓ) ,

for all ℓ, where the first and last equalities use (3.11), and the second uses (A.31)

(equivalently, (3.2)) and (A.32). Thus, we have (θℓ,Tℓ) → (θ0, Inx) as ℓ → ∞, and

δ+(θℓ,Tℓ) = δ+(θ0, Inx), so (3.12) is satisfied, for all ℓ, hence contradicting that it has

14



a locally unique solution (θℓ,Th) = (θ0, Inx). This completes the proof of part (a) of

the Lemma.

(b) Again, for given h > 0, θ is locally identifiable from the autocovariances of yτ at a

point θ0 ∈ Θ if and only if there is no observationally equivalent θℓ in a neighborhood

of θ0. Combining (a) and (d) of Lemma 2, under the stated assumptions, and in the

absence of aliases, observational equivalence of θ0 and θℓ is equivalent to existence of

Th such that (3.8) is satisfied. Thus, the condition that there be no observationally

equivalent θℓ in a neighborhood of θ0 is equivalent to the condition that (3.16) has

a locally unique solution at (θℓ,Th) = (θ0, Inx), with δa(θ,Th) defined in (3.15), and

local absence of aliases suffices. We conclude that for given h > 0, and in the absence

of local alises, θ is locally identifiable from the autocovariances of yτ at a point θ0 ∈ Θ

if and only if (3.16) has a locally unique solution at (θℓ,Th) = (θ0, Inx).

(c) The proof follows along the lines of the proof of part (b) of the Lemma. Combining (b)

and (e) of Lemma 2, under the stated assumptions, in the absence of aliases, and in a

neighborhood of θ0 in which Συ,h(θ) is constant, observational equivalence of θ0 and θℓ

is equivalent to existence of Th, Uh such that (3.9) is satisfied, with (T,U) = (Th,Uh).

Thus, the identifiability condition that there be no observationally equivalent θℓ in a

neighborhood of θ0 is equivalent to the condition that (3.14) has a locally unique

solution at (θℓ,Th,Uh) = (θ0, Inx , Imw), with δa(θ,Th,Uh) defined in (3.13), and local

absence of aliases together with local constancy of Συ,h(θ) suffices. ■

A.5 Proof of Proposition 2

The proof of Proposition 2 follows that of Propositions 2-S and 2-NS in Komunjer and Ng

(2011). In the latter, based on the discrete-time DSGE model in the non-singular case, θ

is locally identifiable from the autocovariances of yτ at θ0 for given h > 0 if and only if the

system (3.2) has a locally unique solution at (θℓ,Th) = (θ0, Inx), and Proposition 2-NS

then establishes the necessary and sufficient rank condition and necessary order condition

based on ∆(θ0) from (3.17). For given h > 0, Assumptions 1, 2 and 4 in Komunjer and

Ng (2011) are implied by our Assumptions 1, 2 and 4. Further, their Assumption 3,

continuous differentiability of Λ(θ) from (2.17), follows from our Assumption 3 on the

underlying continuous-time matrices Λc(θ) = (A(θ),B(θ),C(θ)) from (2.3) andΣυ,h(θ).

In our case, based on the continuous-time underlying DSGE model, Λ(θ) is extended to

Λ+(θ), and modified toΛa(θ), Λc(θ). Correspondingly, δ(θ,Th) is extended to δ+(θ,Th)

in (3.11), and modified to δa(θ,Th) in (3.15), and δc(θ,Th,Uh) in (3.13). Continuous

differentiability in θ of Λ+(θ), Λa(θ), and Λc(θ) follows from our Assumption 3 on

the underlying continuous-time matrices Λc(θ) and Συ,h(θ). By Lemma 3, θ is locally

identifiable from the autocovariances of yτ at θ0 for given h > 0 if and only if δ+(θℓ,Th) =
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δ+(θ0, Inx) (i.e., (3.12)) has a locally unique solution at (θℓ,Th) = (θ0, Inx), which in the

absence of local aliases (by Lemma 3.(b)) occurs if and only if δa(θℓ,Th) = δ(θ0, Inx) (i.e.,

(3.16)) has a locally unique solution at (θℓ,Th) = (θ0, Inx), and (by Lemma 3.(c)) under

the additional conditions onCs(θ0), Συ,h(·) if and only if δc(θℓ,Th,Uh) = δc(θ0, Inx , Imw)

(i.e., (3.14)) has a locally unique solution at (θℓ,T,U) = (θ0, Inx , Imw). Therefore, the

necessary and sufficient rank conditions and necessary order conditions based on the

similarly extended and modified derivative matrices, ∆+(θ0) from (3.18), ∆a(θ0) from

(3.19), and ∆c(θ0) from (3.20), follow along the lines of Komunjer and Ng (2011). As

discussed in Remark 3.1, although we consider the non-singular case, Uh appears as an

additional argument in δc, in similarity with the analysis of the singular case in Komunjer

and Ng (2011), the reason being that the implications of observational equivalence that

we exploit stem from the underlying continuous-time model, with B(θ0) locally identified

if and only if (Th,Uh) = (Inx , Imw) are the only local similarity transform and factor

rotation.

For completeness, we present the relevant partial derivatives of δ+(θ,Th), δa(θ,Th),

and δc(θ,Th,Uh), as well as the constancy of rank argument, as applied to our case.

Thus, for part (a) of the Proposition,

∂δ+(θ,Th)

∂θ
=


((T−1

h )⊤ ⊗ Ins
y
)∂vecC

s(θ)
∂θ

((T−1
h )⊤ ⊗Th)

∂vecA(θ;h)
∂θ

(Iny ⊗Th)
∂vecK(θ;h)

∂θ

((T−1
h )⊤ ⊗ Iny)

∂vecC(θ;h)
∂θ

∂vechΣν(θ;h)
∂θ

 , (A.33)

∂δ+(θ,Th)

∂vec(Th)
=


−((T−1

h )⊤ ⊗ Ins
y
)[Inx ⊗Cs(θ)](Inx ⊗T−1

h )

((T−1
h )⊤ ⊗Th)[A(θ;h)⊗ Inx − Inx ⊗ A(θ;h)](Inx ⊗T−1

h )

(Iny ⊗Th)[K(θ;h)
⊤ ⊗ Inx ](Iny ⊗T−1

h )

−((T−1
h )⊤ ⊗ Iny)[Inx ⊗ C(θ;h)](Inx ⊗T−1

h )

0ny(ny+1)/2×n2
x

 . (A.34)

From the discussion around (3.17) and (3.18), the derivatives (A.33) and (A.34) constitute
the submatrices of the Jacobian J +(θ,Th). Inserting (θ,Th) = (θ0, Inx) yields ∆

+
h (θ0)

from (3.18). Note that J +(θ,Th) can be alternatively written asM+(Th)∆
+(θ)N+(Th),

where M+(Th) and N+(Th) are square block diagonal matrices of dimensions ns
ynx+n

2
x+

2nxny + ny(ny + 1)/2 and mθ + n2
x, respectively, defined by

M+(Th) =


(T−1

h )⊤ ⊗ Ins
y

(T−1
h )⊤ ⊗Th

Iny
⊗Th

(T−1
h )⊤ ⊗ Iny

Iny(ny+1)/2

 ,
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N+(Th) =

(
Inθ

Inx ⊗T−1
h

)
.

Since Th is full rank, so are M+(Th) and N+(Th). Therefore, rank J +(θ,Th) =

rank ∆+(θ). In particular, if rank ∆+(θ) remains constant in a neighborhood of θ0

(this is the assumption that θ0 is a regular point of ∆+(θ)), then rank J +(θ,Th) re-

mains constant in a neighborhood of (θ0, Inx). Thus, full column rank of J +(θ,Th) in a

neighborhood of (θ0, Inx) is equivalent to the rank condition (3.21). The order condition

(3.22) simply requires at least as many rows as columns in ∆+(θ), i.e., ns
ynx + n2

x +

2nxny + ny(ny + 1)/2 ≥ mθ + n2
x, so that full column rank is feasible.

For part (b) of the Proposition,

∂δa(θ,Th)

∂θ
=


((T−1)⊤ ⊗T)∂vecA(θ)

∂θ

((T−1)⊤ ⊗ Iny)
∂vecC(θ)

∂θ

(Iny ⊗Th)
∂vecK(θ;h)

∂θ
∂vechΣν(θ;h)

∂θ

 , (A.35)

∂δa(θ,Th)

∂vec(Th)
=


((T−1)⊤ ⊗T)[A(θ)⊤ ⊗ Inx − Inx ⊗A(θ)](Inx ⊗T−1)

−((T−1)⊤ ⊗ Iny)[Inx ⊗C(θ)](Inx ⊗T−1)

(Iny ⊗Th)[K(θ;h)
⊤ ⊗ Inx ](Iny ⊗T−1

h )

0ny(ny+1)/2×n2
x

 . (A.36)

From the discussion around (3.19), the derivatives (A.35) and (A.36) constitute the sub-
matrices of the Jacobian Ja(θ,Th). Inserting (θ,Th) = (θ0, Inx) yields ∆a(θ0) from
(3.19). Note that Ja(θ,Th) can be alternatively written as Ma(Th)∆a(θ)Na(Th), where
Ma(Th) and Na(Th) are square block diagonal matrices of dimensions n2

x + 2nxny +
ny(ny + 1)/2 and mθ + n2

x, respectively, defined by

Ma(Th) =


(T−1)⊤ ⊗T

(T−1)⊤ ⊗ Iny

Iny ⊗Th

Iny(ny+1)/2

 ,

Na(Th) =

(
Inθ

Inx ⊗T−1
h

)
.

Since Th is full rank, so are Ma(Th) and Na(Th) (note, Na(Th) = N+(Th)). There-

fore, rank Ja(θ,Th) = rank ∆a(θ). In particular, if rank ∆a(θ) remains constant in a

neighborhood of θ0 (this is the assumption that θ0 is a regular point of ∆a(θ)), then

rank Ja(θ,Th) remains constant in a neighborhood of (θ0, Inx). Thus, full column rank

of Ja(θ,Th) in a neighborhood of (θ0, Inx) is equivalent to the rank condition (3.23). The

order condition (3.24) simply requires at least as many rows as columns in ∆a(θ), i.e.,
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n2
x + 2nxny + ny(ny + 1)/2 ≥ mθ + n2

x, so that full column rank is feasible.

For part (c) of the Proposition,

∂δc(θ,Th,Uh)

∂θ
=

 ((T−1
h )⊤ ⊗Th)

∂vecA(θ)
∂θ

(U⊤
h ⊗Th)

∂vecB(θ)
∂θ

((T−1
h )⊤ ⊗ Iny)

∂vecC(θ)
∂θ

 , (A.37)

∂δc(θ,Th,Uh)

∂vec(Th)
=

 ((T−1
h )⊤ ⊗Th)[A(θ)⊤ ⊗ Inx − Inx ⊗A(θ)](Inx ⊗T−1

h )

(U⊤
h ⊗Th)(B(θ)⊤ ⊗ Inx)(Inx ⊗T−1

h )

−((T−1
h )⊤ ⊗ Iny)[Inx ⊗C(θ)](Inx ⊗T−1

h )

 , (A.38)

∂δc(θ,Th,Uh)

∂vec(Uh)
=

 0n2
x×m2

w

(U⊤
h ⊗Th)(Imw ⊗B(θ))((U−1

h )⊤ ⊗ Imw)

0nxny×m2
w

 . (A.39)

From the discussion around (3.20), the derivatives (A.37)-(A.39) constitute the first,
middle, and last submatrix of the Jacobian Jc(θ,Th,Uh). Inserting (θ,Th,Uh) =
(θ0, Inx , Imw) yields ∆c(θ0) from (3.20). Note that Jc(θ,Th,Uh) can be written in the
form Mc(Th,Uh)∆c(θ)Nc(Th,Uh), where Mc(Th,Uh) and Nc(Th,Uh) are square block
diagonal matrices of dimensions n2

x+nxny+nxmw and mθ+n
2
x+m

2
w, respectively, defined

by

Mc(Th,Uh) =

 (T−1
h )⊤ ⊗Th

U⊤
h ⊗Th

(T−1
h )⊤ ⊗ Iny

 ,

Nc(Th,Uh) =

 Inθ

Inx ⊗T−1
h

(U−1
h )⊤ ⊗ Imw

 .

SinceTh andUh are full rank, so areMc(Th,Uh) andNc(Th,Uh), so rank Jc(θ,Th,Uh) =

rank ∆c(θ). In particular, if rank ∆c(θ) remains constant in a neighborhood of θ0 (this

is the assumption that θ0 is a regular point of ∆c(θ)), then rank Jc(θ,Th,Uh) remains

constant in a neighborhood of (θ0, Inx , Imw). Thus, full column rank of Jc(θ,Th) in a

neighborhood of (θ0, Inx) is equivalent to the rank condition (3.25). The order condition

(3.26) simply requires at least as many rows as columns in∆c(θ), i.e., n
2
x+nxny+nxmw ≥

mθ + n2
x +m2

w, so that full column rank is feasible. ■

A.6 Proof of Proposition 3

Recall from (2.7) that ητ =
[
ηs,⊤
τ , ηf,⊤

τ

]⊤
. For possibly large but finite n, the proof is con-

structed in three steps. First, we show that the Proposition holds for ηs. Then, we do the

same for ηf in isolation. Finally, the proof follows from stacking the two separate cases.
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Step 1: Innovations to stock variables, ηs. Consider n ∈ Z+ such that

ηs
τ =

n∑
i=1

exp(A(θ)(tτ − tτi−1))B(θ)∆w(tτi ) + oP (1).

Expanding the sum on the right-hand side yields

ηs
τ = exp(A(θ)h)B(θ)∆w(tτ1) + exp(A(θ)(h− hn))B(θ)∆w(tτ2) + . . .

· · ·+ exp(A(θ)(h− (n− 2)hn))B(θ)∆w(tτn−1)

+ exp(A(θ)(h− (n− 1)hn))B(θ)∆w(tτn) + oP (1),

which using (2.6) can be rewritten as

ηs
τ = (I+A(θ)h+A(θ)2h2/2 + . . . )B(θ)∆w(tτ1)

+ (I+A(θ)(h− hn) +A(θ)2(h− hn)
2/2 + . . . )B(θ)∆w(tτ2) + . . .

· · ·+ (I+A(θ)(h− (n− 2)hn) +A(θ)2(h− (n− 2)hn)
2/2 + . . . )B(θ)∆w(tτn−1)

+ (I+A(θ)(h− (n− 1)hn) +A(θ)2(h− (n− 1)hn)
2/2 + . . . )B(θ)∆w(tτn) + oP (1).

Collecting terms with similar coefficients yields

ηs
τ =

(
I+A(θ)h+A(θ)2(h2/2) + . . .

)
B(θ)

n∑
i=1

∆w(tτi )

+
[
A(θ)2h2n/2−A(θ)hn −A(θ)2hhn − . . .

]
B(θ)∆w(tτ2) + . . .

· · ·+
[
(n− 2)2A(θ)2h2n/2−A(θ)(n− 2)hn − (n− 2)A(θ)2hhn + . . .

]
B(θ)∆w(tτn−1)

+
[
(n− 1)2A(θ)2h2n/2−A(θ)(n− 1)hn − (n− 1)A(θ)2hhn + . . .

]
B(θ)∆w(tτn) + oP (1)

= h1/2 exp(A(θ)h)B(θ)uτ +Rτ ,

where we have used the definitions of the matrix exponential in (2.6), of uτ in (4.1), and

the fact that tτ0 = tτ−1 and tτn = tτ .

The term Rτ denotes the remainder of the approximation. By recalling that hn = h/n,

the properties of Rτ can be characterized according to the following three limiting be-

haviors: (i) one for increasing number of sub-intervals n→ ∞, while keeping h constant;

(ii) one for decreasing length between sub-intervals, hn → 0; (iii) and, analogously, one

for increasing frequency of data, h → 0. Note that shrinking hn or h describes a similar

behavior, that is, increasing data availability.

(i) As n→ ∞, it follows thatA(θ)hn = O(n−1), and the termA(θ)(n−1)hn → A(θ)h.

Similarly, the term ∆w(tτi ) = OP (n
−1/2) for all 1 < i ≤ n. Then, the remainder
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Rτ = OP (n
−1/2), i.e., it is bounded in probability by n−1/2, a scalar that decreases

with increasing number of sub-intervals.

(ii) As hn → 0, it follows that A(θ)hn = O(hn),A(θ)(n−1)hn = O(hn), and ∆w(tτi ) =

OP (h
1/2
n ). Then, Rτ = OP (h

3/2
n ).

(iii) For h → 0, it follows that A(θ)hn = O(h), A(θ)(n− 1)hn = O(h), and ∆w(tτi ) =

OP (h
1/2), for all 1 < i ≤ n. Then, Rτ = OP (h

3/2).

Step 2: Innovations to flow variables, ηf . Consider n ∈ Z+ such that

ηf
τ = Sf

xA(θ)−1

n∑
i=1

[exp(A(θ)(tτ − tτi−1))− Ins
x
]B(θ)∆w(tτi ) + oP (1),

where Sf
x is a selection matrix. By proceeding as in Step 1, we arrive at

ηf
τ = h1/2Sf

xA(θ)−1
[
exp(A(θ)h)− Ins

x

]
B(θ)uτ +Rτ

as h→ 0. The properties of the remainder term Rτ in the expansion of ηf
τ are the same

as those for the expansion ηs
τ in Step 1.

Step 3: Innovations to both stock and flow variables, η. Stack ηs
τ and ηf

τ to obtain

ητ = h1/2

[
exp(A(θ)h)B(θ)

Sf
xA(θ)−1

[
exp(A(θ)h)− Ins

x

]
B(θ)

]
uτ +Rτ ,

where it is straightforward to show that

(i) Rτ = OP (n
−1/2) as n→ ∞

(ii) Rτ = OP (h
3/2
n ) as hn → 0

(iii) Rτ = OP (h
3/2) as h→ 0. ■

A.7 Proof of Proposition 4

Using Proposition 3, and given that H(θ) = O(h3/2), it follows that H(θ)−1Rτ = OP (1).

■

20



B. Matrix computations

B.1 Computation of Ah(θ)

From Proposition 1, the mx ×mx matrix Ah(θ) is defined as

Ah(θ) = exp (A(θ)h) = I+A(θ)h+ 1
2
A2(θ)h2 + 1

3!
A3(θ)h3 + . . . ,

where Aj(θ) indicates right multiplication of j copies of the mx × mx matrix A(θ).

Assume A(θ) is diagonalizable. Then, A(θ) can be factorized as

A(θ) = VΛV−1,

where V is a square matrix whose columns correspond to the eigenvectors of A(θ) and

Λ is a diagonal matrix whose elements are the corresponding eigenvalues,

Λ =


λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λmx

 .

Therefore, the exponential matrix exp(A(θ)h) can be computed as

exp(A(θ)h) = V exp(Λh)V−1 = V


eλ1h 0 . . . 0

0 eλ2h . . . 0
...

...
. . .

...

0 0 . . . eλmxh

V−1.

B.2 Computation of Ση,h(θ)

Here, we show how to implement the matrix decomposition method in Van Loan (1978,

Theorem 1) to compute the elements of the variance-covariance matrix of the reduced-

form innovation, Ση,h(θ).

Define the augmented 4mx × 4mx upper block triangular matrix

Ξ(θ) =


−A(θ) Imx 0mx 0mx

0mx −A(θ) Σ(θ) 0mx

0mx 0mx A(θ)⊤ Imx

0mx 0mx 0mx 0mx

 ,
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with exponential

exp(Ξ(θ)h) =


F1,h(θ) G1,h(θ) H1,h(θ) K1,h(θ)

0mx F2,h(θ) G2,h(θ) H2,h(θ)

0mx 0mx F3,h(θ) G3,h(θ)

0mx 0mx 0mx F4,h(θ)

 ,

computed using the matrix exponential function expm in Matlab.2 Then, it follows Equa-

tions (2.9)-(2.11) can be computed as

Σηs,h(θ) = F3,h(θ)
⊤G2,h(θ), (B.1)

Σηsηf ,h(θ) = F3,h(θ)
⊤H2,h(θ)S

f⊤
x , (B.2)

Σηf ,h(θ) = Sf
x

([
F3,h(θ)

⊤K1,h(θ)
]
+
[
F3,h(θ)K1,h(θ)

⊤])Sf⊤
x , (B.3)

where

F3,h(θ) = exp(A(θ)⊤h) = Ah(θ)
⊤

G2,h(θ) =

ˆ h

0

exp (−A(θ)(h− u))Σ(θ) exp
(
A(θ)⊤u

)
du

H2,h(θ) = Ah(θ)
−1

ˆ h

0

ˆ u

0

exp (A(θ)u)Σ(θ) exp
(
A(θ)⊤r

)
drdu

K1,h(θ) = Ah(θ)
−1

ˆ h

0

ˆ u

0

ˆ r

0

exp (A(θ)r)Σ(θ) exp
(
A(θ)⊤v

)
dvdrdu.

The computation of Σηf ,h(θ) uses the fact that if M(r, v) = eArΣeA
⊤v, then

ˆ u

0

ˆ r

0

[M(r, v) +M(v, r)] dvdr =

ˆ u

0

ˆ u

0

M(r, v)dvdr.

2Moler and Van Loan (1978, 2003) and Jewitt and McCrorie (2005) provide a comparison of a variety
of methods for computing the matrix exponential.
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C. Alternative discretization

In this section we derive an alternative discretization of the flow states variables that

involves both autoregressive dynamics and a moving average (MA) component. We show

that resulting discretized system is equivalent to the Exact Discrete State Space Repre-

sentation (ED-SSR) in the main text.

Let yf (t) and ys(t) denote the time t measurements sampled, respectively, as flows

and stocks at observation times. With Sf
x = Imx , the state space system (2.1)-(2.2) can

be equivalently written as[
dxs(t)

dxf (t)

]
=

[
A(θ) 0

0 A(θ)

][
xs(t)

xf (t)

]
dt+

[
B(θ)

B(θ)

]
dw(t) ,[

ys(t)

yf (t)

]
=

[
Ss
yC(θ) 0

0 Sf
yC(θ)

][
xs(t)

xf (t)

]
.

Taking integrals, in the Itô sense, on the left and right-hand side for dxf (t), we have

ˆ tτ

tτ−1

dxf (v) = A(θ)

ˆ tτ

tτ−1

xf (v)dv +B(θ)

ˆ tτ

tτ−1

dw(v) . (C.1)

If Assumption 1 in the main text holds, A(θ) is invertible, and Equation (C.1) can be

reorganized as

ˆ tτ

tτ−1

xf (v)dv = A(θ)−1

ˆ tτ

tτ−1

dxf (v)−A(θ)−1B(θ)

ˆ tτ

tτ−1

dw(v) .

Further, notice that by definition of the Itô’s integral,

ˆ tτ

tτ−1

dxf (v) = x̄f (tτ )− x̄f (tτ−1) , (C.2)

where x̄f (tτ ) = Ah(θ)x̄
f (tτ−1) +

´ h
0
exp(A(θ)v)B(θ)dw(tτ−1 + v) (see Appendix A.1).

Then we may write

ˆ tτ

tτ−1

dxf (v)dv = Ah(θ)[x̄
f (tτ−1)− x̄f (tτ−2)]

+

[ˆ tτ

tτ−1

exp(A(θ)(tτ − v))B(θ)dw(v)

−
ˆ tτ−1

tτ−2

exp(A(θ)(tτ−1 − v))B(θ)dw(v)

]
.
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Combining (C.1) and (C.2) yields

x̄f (tτ−1)− x̄f (tτ−2) =

ˆ tτ−1

tτ−2

dxf (v) = A(θ)

ˆ tτ−1

tτ−2

xf (v)dv +

ˆ tτ−1

tτ−2

B(θ)dw(v) .

This, in turn, means

ˆ tτ

tτ−1

xf (v)dv = A(θ)−1Ah(θ)A(θ)

ˆ tτ−1

tτ−2

xf (v)dv

+A(θ)−1Ah(θ)

ˆ tτ−1

tτ−2

B(θ)dw(v)

+A(θ)−1

ˆ tτ

tτ−1

exp(A(θ)(tτ − v))B(θ)dw(v)

−A(θ)−1

ˆ tτ−1

tτ−2

exp(A(θ)(tτ−1 − v))B(θ)dw(v)

−A(θ)−1B(θ)

ˆ tτ

tτ−1

dw(v) ,

where we used eCAC−1
= CeAC−1. Aggregating the terms with the same random mea-

sures, we obtain

ˆ tτ

tτ−1

xf (v)dv = Ah(θ)

ˆ tτ−1

tτ−2

xf (s)ds

+

ˆ tτ

tτ−1

A(θ)−1 (exp(A(θ)(tτ − v))− I)B(θ)dw(v)

+

ˆ tτ−1

tτ−2

A(θ)−1
(
exp(A(θ)h)− exp (A(θ)(tτ−1 − v))

)
B(θ)dw(v) ,

which, using the notation of the paper, can be compactly written in the VARMA(1,1)

system form

xf
τ = Ah(θ)x

f
τ−1 + ςfτ , (C.3)

where the vector of reduced-form residuals ςfτ = ηf,1
τ +G(θ)ηf,2

τ−1 follows a vector moving

average process or order one (VMA(1)). Notice that ηf,1
τ can be rewritten as

ηf,1
τ =

ˆ tτ

tτ−1

A(θ)−1
(
exp (A(θ)(tτ − u)− Imx

)
B(θ)dw(u) ,

while G(θ)ηf,2
τ−1 is equivalent to

G(θ)ηf,2
τ−1 =

ˆ tτ−1

tτ−2

A(θ)−1
(
exp (A(θ)(tτ−1 − u)− Imx

)
B(θ)dw(u) .

24



The autocovariances of the reduced-form residuals are given by

E[ςfτ ςf⊤τ ] = 2

ˆ h

0

ˆ u

0

exp(A(θ)r)B(θ)B(θ)⊤ exp(A(θ)⊤r)drdu ,

E[ςfτ ς
f⊤
τ−1] =

ˆ h

0

ˆ u

0

exp(A(θ)r)B(θ)B(θ)⊤ exp(A(θ)⊤r)drdu ,

and E[ςτς⊤τ−ℓ] = 0mx , for all ℓ ̸= −1, 0, 1.

Finally, notice that ηf,1
τ and G(θ)ηf,2

τ are the same vector of reduced-form residuals

that we find in the paper, i.e, ηf
τ = ηf,1

τ = G(θ)ηf,2
τ . Therefore, the discretized state

space form with VARMA(1,1) transition can be represented as

 xτ

xf
τ

ηf
τ

 =


Ah(θ) 0ns

x×nf
x

0ns
x×nf

x

0nf
x×ns

x
Ah(θ) Inf

x

0nf
x×ns

x
0nf

x×nf
x

0nf
x×nf

x


 xτ−1

xf
τ−1

ηf
τ−1

+


Ins

x
0ns

x×nf
x

0nf
x×ns

x
Inf

x

0nf
x×ns

x
Inf

x


[

ηs
τ

ηf
τ

]

[
ys
τ

yf
τ

]
=

[
Ss
yC(θ) 0ns

y×nf
x

0ns
y×nf

x

0ns
y×ns

x
Sf
yC(θ) 0nf

y×nf
x

] xτ

xf
τ

ηf
τ

 ,

with error covariances

E[ητη
⊤
τ ] =

[ ´ h
0 eA(θ)vB(θ)B(θ)⊤eA(θ)⊤vdv

´ h
0

´ u
0 eA(θ)(u−r)B(θ)B(θ)⊤eA(θ)⊤rdrdu´ h

0

´ u
0 eA(θ)rB(θ)B(θ)⊤eA(θ)⊤(u−r)drdu

´ h
0

´ u
0 eA(θ)rB(θ)B(θ)⊤eA(θ)⊤rdrdu

]
.

C.1 Equivalence result

We now show that our proposed approach intrinsically accounts for the larger and more

convoluted VARMA(1,1) system (C.3). From (2.4), recall that

xf
τ = A(θ)−1(eA(θ)h − Imx)x

s
τ−1 + ηf

τ ,

whereas in the approach derived above we have xf,B
τ = Ah(θ)x

f,B
τ−1 + ηf,B

τ + ηf,B
τ−1, where

we used the superscript B to highlight that the equations in the alternative discretization

are similar to those in Bergstrom (1984). Since the structural shocks are the same and

are cumulated in the system through the same integrals, ηf
τ = ηf,B

τ for all τ, the two

approaches are equivalent if and only if

A(θ)−1(eA(θ)h − Imx)x
s
τ−1 = Ah(θ)x

f,B
τ−1 + ηf

τ−1 .
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According to the state space representation (2.4)-(2.5), A(θ)−1(eA(θ)h− Imx)x
s
τ−1 = xf

τ −
ηf
τ . Then, we obtain that

xf
τ = Ah(θ)x

f,B
τ−1 + ηf

τ + ηf
τ−1 ,

which is the formula we found using the approach of Bergstrom (1984), Equation (C.3).

Therefore, it holds that

xf
τ = xf,B

τ .

This shows that when expressing xf
τ in terms of the latent xs

τ−1, the MA component is

inherently included.
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D. The ABCD representation

Define by Sυ the ny × nυ selection matrix that for each row corresponding to a measure-

ment observed with error selects the latter from υt. For example, if all measurements are

observed with error, then Sυ = Inυ . If only the last measurement is observed with error,

then nυ = 1, and Sυ = (0, . . . , 0, 1)⊤. The matrices of the (non-minimal) ABCD state

space representation (2.12)-(2.13) are given by

A(θ;h) :=

[
Ah(θ) 0ns

x×nf
x

Sf
xA(θ)−1(Ah(θ)− Ins

x
) 0nf

x×nf
x

]
, B(θ;h) :=

[
Inx 0nx×nυ

]
,

C(θ;h) :=

[
Ss
yC(θ) 0ns

y×nf
x

0nf
y×ns

x
Sf
yC(θ)Sf⊤

x

]
· A(θ;h) ,

D(θ;h) :=

[ (
Ss
yC(θ) 0ns

y×nf
x

0nf
y×ns

x
Sf
yC(θ)Sf⊤

x

)
· B(θ, h) Sυ

]
, Σϵ(θ;h) :=

[
Ση,h(θ) 0nx×nυ

0nυ×nx Συ,h(θ)

]
.

For the case of the Euler-Maruyama (EM) discretization, the matrices are given by

A(θ;h) := Ins
x
+A(θ)h , B(θ;h) := [Ins

x
,0ns

x×nυ ] , C(θ;h) := C(θ) · A(θ;h) ,

D(θ;h) := [C(θ),Sυ] , Σϵ(θ;h) :=

[
hB(θ)B(θ)⊤ 0⊤

ny×nx

0ny×nx Συ,h(θ)

]
.

The minimal system for the ABCD state space representation is instead given by

xs
τ = Ah(θ)︸ ︷︷ ︸

:=A(θ;h)

xs
τ−1 +

[
Ins

x
0ns

x×ns
x

0ns
x×nυ

]
︸ ︷︷ ︸

:=B(θ;h)

 ηs
τ

ηf
τ

υτ


︸ ︷︷ ︸

:=ϵτ

, (D.3)

[
ys
τ

yf
τ

]
=

[
Ss
yC(θ)Ah(θ)

Sf
yC(θ)A(θ)−1(Ah(θ)− Ins

x
)

]
︸ ︷︷ ︸

:=C(θ;h)

xs
τ−1

+

[
Ss
yC(θ) 0ns

y×ns
x Sυ

0nf
y×ns

x
Sf
yC(θ)

]
︸ ︷︷ ︸

:=D(θ;h)

 ηs
τ

ηf
τ

υτ


︸ ︷︷ ︸

:=ϵτ

, (D.4)

Σϵ(θ;h) = diag
(
Ση,h(θ),Συ,h(θ)

)
, (D.5)

using Sf
x = Ins

x
in ηf

τ from (2.7) and hence in Ση,h(θ) in the minimal representation.
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E. Kalman filter recursions and the likelihood function

As argued in Section 2.2, the state-space solution for the vector of observables yT admits

the ABCD representation

xτ+1 = A(θ;h)xτ + B(θ;h)ϵτ+1

yτ+1 = C(θ;h)xτ + D(θ;h)ϵτ+1

where E[ϵτϵ⊤τ ] = Σϵ(θ;h), and the matrices A(θ;h), B(θ;h), C(θ;h), D(θ;h), Σϵ(θ;h)

are defined in Appendix D.

E.1 Kalman filter

Let yτ−1 = {y1, . . . ,yτ−1} denote the history of measurements up to time tτ−1. Addi-

tionally, let xτ |τ−1 = E [xτ |yτ−1] denote the forecast of the state vector conditional on

the information available at the time tτ−1, and Pτ |τ−1 = E
[(
xτ − xτ |τ−1

) (
xτ − xτ |τ−1

)⊤]
the corresponding forecast error covariance matrix. Similarly, let yτ |τ−1 = E [yτ |yτ−1] de-

note the forecast of the control variables conditional on past information, and Σν,τ |τ−1 =

E
[(
yτ − yτ |τ−1

) (
yτ − yτ |τ−1

)⊤]
its associated forecast error covariance matrix. By ex-

ploiting the linearity of (2.12)-(2.13), the forecast of the state variables and their associ-

ated variance-covariance are

xτ |τ−1 = A(θ;h)xτ−1|τ−1, (E.1)

Pτ |τ−1 = A(θ;h)Pτ−1|τ−1A(θ;h)
⊤ + B(θ;h)Σϵ(θ;h)B(θ;h)

⊤, (E.2)

given initial conditions x0 and P0. Since the state vector is stationary, by Lemma 1, we

use as initial values its unconditional mean x0 = x1|0 = E [x1] = 0, and its unconditional

covariance matrix

vec (P0) = vec
(
P1|0

)
= vec

(
E
[
x1x

⊤
1

])
=
[
In2

x
− (A(θ;h)⊗ A(θ;h))

]−1
[B(θ;h)⊗ B(θ;h)]vec (Σϵ(θ;h)) ,

where vec is the vectorization operator. Given the predictions for the state variables,

the Kalman filter recursively computes the one-step-ahead forecast error of the control

variables and associated variance-covariance matrix

ντ |τ−1 = yτ − yτ |τ−1 = yτ − C(θ;h)xτ−1|τ−1 (E.3)

Σν,τ |τ−1 = C(θ;h)Pτ−1|τ−1C(θ;h)
⊤ + D(θ;h)Σϵ(θ;h)D(θ;h)

⊤. (E.4)
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Using the information above, we update the state variables according to

xτ |τ = xτ |τ−1 +Kτ |τ−1ντ |τ−1 (E.5)

Pτ |τ = Pτ |τ−1 −Kτ |τ−1Σν,τ |τ−1K
⊤
τ |τ−1, (E.6)

where

Kτ |τ−1 = A(θ;h)Pτ−1|τ−1C(θ;h)
⊤Σ−1

ν,τ |τ−1 (E.7)

is the Kalman gain. Equations (E.1)-(E.7), together with initial conditions x0 and P0,

define the Kalman filter recursion for τ = 1, 2, . . . , T . If convergence occurs at a given

point tτ−1, then K = Ks+1|s = Ks|s−1 and Σν = Σν,s+1|s = Σν,s|s−1 for all s ≥ τ ∈ N.
We define K = K(θ;h) and Σν = Σν(θ;h) to be the two (time-variant) matrices, after

convergence. Thus, they solve the system

K(θ;h) = A(θ;h)P(θ;h)C(θ;h)⊤Σν(θ;h)
−1 , (E.8)

Σν(θ;h) = C(θ;h)P(θ;h)C(θ;h)⊤ + D(θ;h)Σϵ(θ;h)D(θ;h)
⊤ , (E.9)

P(θ;h) = A(θ;h)
[
P(θ;h)− K(θ;h)Σν(θ;h)K(θ;h)

⊤]A(θ;h)⊤
+ B(θ;h)Σϵ(θ;h)B(θ;h)

⊤ , (E.10)

where P(θ;h) is Pτ |τ−1 upon convergence.

E.2 The innovations representation

Under Assumptions 1 and 2, the ABCD representation admits the time-invariant innova-

tions representation

xτ+1|τ+1 = A(θ;h)xτ |τ + K(θ;h)ντ+1|τ

yτ+1 = C(θ;h)xτ |τ + ντ+1|τ

where E[ντ+1|τν
⊤
τ+1|τ ] = Σν(θ;h) for all τ ∈ N, and xτ |τ are the filtered states.

The innovations representation involves the matrices from (2.17),

Λ (θ) = (A(θ;h),K(θ;h),C(θ;h),Σν(θ;h)) (E.11)

given by A(θ;h) and C(θ;h) from the ABCD representation in the Appendix D, and

K(θ;h) and Σν(θ;h) from system (E.8)-(E.10). Thus, K(θ;h) and Σν(θ;h) are functions

of the matrices A(θ;h), B(θ;h), C(θ;h), D(θ;h), and Σϵ(θ;h) of the ABCD representa-

tion, too.
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E.3 Likelihood function

Given the linear structure of the Gaussian state-space model (2.12)-(2.13), it follows that

the (joint) probability density function of the discrete measurements can be written as

f(yT ;θ) = f(y1, . . . ,yT ;θ) = f(y0;θ)
T∏

τ=1

f(yτ |yτ−1;θ) ,

where f (yτ |yτ−1;θ;h) = N
(
C(θ, h)xτ−1|τ−1,Σν,τ |τ−1

)
. Then, using the Kalman filter

recursion, the conditional log-likelihood function, given y0, can be constructed recursively

via the prediction error decomposition as (see Durbin and Koopman, 2012)

L
(
θ|yT

)
=

T∑
τ=1

ln f
(
yτ |yτ−1;θ

)
= −nyT

2
ln (2π)− 1

2

T∑
τ=1

ln |Σν,τ |τ−1| −
1

2

T∑
τ=1

ν⊤
τ |τ−1Σ

−1
ν,τ |τ−1ντ |τ−1 ,

and the maximum-likelihood (ML) estimator of θ as

θ̂ = argmax
θ∈Θ

L
(
θ|yT

)
.

E.4 State and disturbance smoothing

For τ = T, . . . , 1, we smooth the state variables xτ , given the observations {y0, . . . ,yT},
using the two-step fast state-smoothing recursion in Durbin and Koopman (2012, Chap-

ter 4). In the first step, we run a backward smoother algorithm. In particular, let rT = 0,

then compute

Lτ = A(θ;h)−Kτ |τ−1C(θ;h)

rτ−1 = C(θ;h)⊤Σ−1
ν,τ |τ−1ντ |τ−1 + L⊤

τ rτ

Nτ−1 = C(θ;h)⊤Σ−1
ν,τ |τ−1C(θ;h) + L⊤

τ NτLτ

x̂τ = xτ |τ +Pτ |τrτ−1

Vτ = Pτ |τ −Pτ |τNτ−1Pτ |τ .

In the second step, for τ = 1, ..., T , compute the recursion for the smoothed reduced-form

residuals

η̂τ = x̂τ − A(θ;h)x̂τ−1 .
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F. Oscillations

An alias is a matrix A0 ̸= A(θ0) solving (3.4). Here, we show that Assumption 5 rules

out local aliases, but not aliases at isolated points. Thus, assume that the eigenvalues

of A(θ0) are distinct, and do not differ by an integer multiple of 2πi/h. This imposes

a simple structure on the data sampling process, whereby the underlying continuous-

time model does not generate oscillations with periods shorter than twice the interval

between observations, h. Following Phillips (1973), the oscillations are characterized by

the complex eigenvalues of A(θ0), that occur in complex conjugate pairs—say, q pairs,

2q ≤ nx. In particular, the solutions of (3.4) are given by

Ak = A(θ0) +
2πi

h
V(θ0)DkV(θ0)

−1 , (F.1)

a countably infinite set of solutions Ak, for q > 0. Here, V(θ0) is the nonsingular matrix

with columns given by the of eigenvectors ofA (θ0). Further,Dk = diag(0nx−2q,Mk,−Mk),

where Mk is a diagonal matrix with diagonal elements mk,j ∈ Z+, j = 1, . . . , q. If the

eigenvalues of A(θ0) are real, q = 0, then Ak = A(θ0) in (F.1), and there are no aliases.

With complex eigenvalues, q > 0, the aliases Ak are not local, but arise at isolated points

in the space of nx × nx matrices, because h > 0 is fixed, as determined by the sampling

frequency, mk,j are integers, and V(θ0) is nonsingular. In particular,

||Ak −A(θ0)||2F =

(
2πi

h

)2

trace V(θ0)D
2
kV(θ0)

−1 =

(
2πi

h

)2

trace D2
k ≥

(
2πi

h

)2

q ,

since mk,j ≥ 1, with || · ||F the Frobenius norm, so there is a lower bound 2π/h > 0 on the

distance between Ak and A(θ0). Therefore, the solution A0 = A(θ0) of (3.4) is unique

in a neighborhood around A(θ0), i.e., there are no local aliases.
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G. The real business cycle model

G.1 The HJB equation and the first-order conditions

The social planner chooses paths for consumption and the fraction of hours worked that

maximize expected discounted lifetime utility, subject to the law of motion for the capital

stock (5.1), the production function (5.2), and the evolution of TFP (5.3). There is

no population growth, and both population size and endowment of available time are

normalized to unity. In addition, the aggregate resource constraint Y (t) = C(t) + I(t)

must hold, at all points in time.

Both welfare theorems hold in this single-good economy. Hence, it is possible to solve

the social planner’s problem directly. It is given by the dynamic optimization problem

J(K0, Z0) = max
{C(t),N(t)}∞t=0

E0

[ˆ ∞

0

e−ρt (lnC(t) + ψ (1−N(t))) dt

]
,

subject to

dK(t) =
(
exp (Z(t))K(t)α (exp (ηt)N(t))1−α − C(t)− δK(t)

)
dt+ σkK(t)dwk(t) ,

dZ(t) = −ρzZ(t)dt+ σzdwz(t) ,

in which C(t) ∈ R+ and N(t) ∈ [0, 1] are the control variables at instant t > 0, K(t) ∈ R+

and Z(t) ∈ R are the state variables at instant t, and J (K,Z) is the value of the optimal

program (value function) given the initial conditions K (0) = K0 and Z (0) = Z0.

The economy exhibits a balanced growth path, i.e., over the long run, the variables

in the economy, with the exception of hours worked and TFP, will grow at the gross

rate η > 1. A stationary version of the model can be obtained by defining y(t) :=

Y (t)/ exp (ηt), c(t) := C(t)/ exp (ηt), k(t) := K(t)/ exp (ηt) to be the de-trended values

of the macroeconomic variables. For notational consistency, we also define n(t) := N(t)

and z(t) := Z(t). Using these definitions, the planner’s optimal control problem can be

rewritten as3

J(k0, z0) = max
{c(t),n(t)}∞t=0

E0

[ˆ ∞

0

e−ρt (ln c(t) + ψ (1− n(t))) dt

]
,

subject to

dk(t) =
(
exp (z(t)) k(t)αn(t)1−α − c(t)− (δ + η) k(t)

)
dt+ σkk(t)dwk(t), k (0) = k0 ,

dz(t) = −ρzz(t)dt+ σzdwz(t) , z (0) = z0 .

3We use the fact that
´∞
t=0

e−ρtηtdt = η
ρ2 for ρ > 0, and hence it is just a constant that we omit without

affecting the optimization problem. In discrete time, this is equivalent to omitting
∑∞

t=0 β
tηt = ηβ

(1−β)2
,

as long as β ∈ (0, 1).
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A recursive representation of the planner’s problem is given by the Hamilton-Jacobi-

Bellman (HJB) equation,4

ρJ (k, z) = max
c,n

{
(ln c+ ψ (1− n)) +

(
exp(z)kαn1−α − c− (δ + η) k

)
Jk (k, z)

− ρzzJz (k, z) +
1

2
σ2
kk

2Jkk (k, z) +
1

2
σ2
zJzz (k, z)

}
, (G.1)

where subscripts denote partial derivatives. The first order conditions for an interior

solution are given by

c = (Jk (k, z))
−1 ,

ψ = (1− α) exp(z)kαn−αJk (k, z) ,

which implicitly define optimal consumption and hours worked as functions of the state

variables of the economy, c = c (k, z) and n = n (k, z).

The maximized HJB equation reads

ρJ (k, z) = ln c (k, z) + ψ (1− n (k, z))

+
(
exp(z)kαn (k, z)1−α − c (k, z)− (δ + η) k

)
Jk (k, z)

− ρzzJz (k, z) +
1

2
σ2
kk

2Jkk (k, z) +
1

2
σ2
zJzz (k, z) , (G.2)

from which it is follows that the co-state variable associated with the capital stock must

satisfy (using the envelope condition)

ρJk (k, z) =
(
α exp (z) kα−1n (k, z)1−α − (δ + η)

)
Jk (k, z)

+
(
exp(z)kαn (k, z)1−α − c (k, z)− (δ + η) k

)
Jkk (k, z)

− ρzzJkz (k, z) + σ2
kkJkk (k, z) +

1

2
σ2
kk

2Jkkk (k, z) +
1

2
σ2
zJkkz (k, z) .

Collecting terms yields

(
ρ− α exp (z) kα−1n (k, z)1−α + δ + η

)
Jk (k, z) =

(
exp(z)kαn (k, z)1−α

− c (k, z)− (δ + η) k
)
Jkk (k, z)− ρzzJkz (k, z)

+ σ2
kkJkk (k, z) +

1

2
σ2
kk

2Jkkk (k, z) +
1

2
σ2
zJkkz (k, z) . (G.3)

4See Chang (2009) for a formal derivation of the HJB equation.
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Using Ito’s formula, the co-state variable evolves according to

dJk (k, z) =

[ (
exp(z)kαn1−α − c− (δ + η) k

)
Jkk (k, z)

− ρzzJkz (k, z) +
1

2
σ2
kk

2Jkkk (k, z) +
1

2
σ2
zJkkz (k, z)

]
dt

+ σkkJkk (k, z) dwk + σzJkz (k, z) dwz ,

where, substituting for the optimal costate in (G.3), we obtain the equilibrium dynamics

of marginal utility of consumption,

dJk (k, z) =

[ (
ρ− α exp (z) kα−1n1−α + δ + η

)
Jk (k, z)− σ2

kkJkk (k, z)

]
dt

+ σkkJkk (k, z) dwk + σzJkz (k, z) dwz . (G.4)

After some algebra, this leads to the Euler equation for consumption,

dc

c
=

[ (
α exp (z) kα−1n1−α − ρ− δ − η

)
− σ2

k

kck (k, z)

c

+
1

2

(
σ2
k

(
kck (k, z)

c

)2

+ σ2
z

(
cz (k, z)

c

)2
)]

dt

+ σk
kck (k, z)

c
dwk + σz

cz (k, z)

c
dwz , (G.5)

where ck (k(t), z(t)) and cz (k(t), z(t)) denote the marginal responses of optimal consump-

tion to changes in the capital stock and TFP.

Given the properties of stochastic integrals with respect to Brownian motion, the

Euler equation for consumption can be alternatively written in expected terms as

1

dt
Et

[
dc

c

]
=
(
α exp (z) kα−1n (k, z)1−α − ρ− δ − η

)
− σ2

k

kck (k, z)

c

+
1

2
σ2
k

(
kck (k, z)

c

)2

+
1

2
σ2
z

(
cz (k, z)

c

)2

. (G.6)
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G.2 Equilibrium

The general equilibrium in this economy can be characterized in the time domain by the

system of nonlinear stochastic differential equations

Et

[
dc

c

]
=

[ (
α exp (z) kα−1n1−α − ρ− δ − η

)
− σ2

k

kck (k, z)

c

+
1

2

(
σ2
k

(
kck (k, z)

c

)2

+ σ2
z

(
cz (k, z)

c

)2
)]

dt ,

(G.7)

dk =
(
exp (z) kαn1−α − c− (δ + η) k

)
dt+ σkkdwk , k (0) = k0 , (G.8)

dz = −ρzzdt+ σzdwz , z (0) = z0 , (G.9)

together with the algebraic (static) equation for the optimal fraction of hours worked,

ψcn = (1− α) exp(z)kαn1−α . (G.10)

Collecting the model variables in the vector x̌ = [c, k, z, n]⊤, and using the properties of

stochastic integrals with respect to Brownian motion, we compactly write the nonlinear

equilibrium as

dx̌(t) = G0 (x̌(t)) dt+G1 (x̌(t)) dw(t) + Π̃dε(t) , (G.11)

where w(t) = [wk(t), wz(t)]
⊤ is the vector of structural shocks, ε(t) is an expectation error

defined as the difference between the actual and unexpected change in consumption, i.e.,

dε(t) = Et [dc(t)]− dc(t), satisfying Et [dε(t)] = 0, and Π̃ is a selection matrix.

G.3 Deterministic steady state

In the absence of uncertainty, the (de-trended) economy converges over time to a fixed

point, or steady-state equilibrium, in which all variables are idle. We denote such point

by x̌⋆ = (c⋆, n⋆, k⋆, z⋆)⊤. Therefore, imposing σk = σz = 0, together with the no-growth

condition dx̌(t)/dt = 0, on the system (G.11), we find the deterministic steady state

z⋆ = 0 , n⋆ = (1− α)
(
ψ
(
1− α(δ+η)

ρ+δ+η

))−1

,

k⋆ =

(
α

ρ+ δ + η

) 1
1−α

n⋆ , and c⋆ = (k⋆)α (n⋆)1−α − (δ + η) k⋆ .

G.4 Log-linearized equilibrium

The nonlinear system formed by (G.7)-(G.10) can be linearized in order to study the

dynamic behavior of the stationary variables as they fluctuate in close proximity to their

deterministic steady-state values. Let ĉ = ln c − ln c⋆, n̂ = lnn − lnn⋆, k̂ = ln k − ln k⋆,
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and ẑ = z − z⋆ denote log-deviations of the variables with respect to their steady-state

values. Then, a first-order Taylor expansion of (G.11) yields
dĉ

dk̂

dẑ

0

 =


0 ξck ξcz ξcn

ξkc ξkk ξkz ξkn

0 0 −ρz 0

ξnc ξnk ξnz −1


︸ ︷︷ ︸

≡Γ̃


ĉ

k̂

ẑ

n̂

 dt+


0 0

σk 0

0 σz

0 0


︸ ︷︷ ︸

≡Ψ̃

[
dwk

dwz

]
+


−1

0

0

0


︸ ︷︷ ︸

≡Π̃

dε ,

where Γ̃ is the Jacobian matrix of the log-transformed equilibrium evaluated at the deter-

ministic steady state, and Ψ̃ is the corresponding diffusion matrix. The log-transformation

is obtained via an application of Itô’s formula to (G.11). The coefficients in Γ̃ are given by

ξck = (α−1)(ρ+δ+η), ξcz = (ρ+δ+η), ξcn = (1−α)(ρ+δ+η), ξkc = −(ρ+(1−α)(δ+η))/α,
ξkk = ρ, ξkz = (ρ+δ+η)/α, ξkn = (1−α)(ρ+δ+η)/α, ξnc = −1/α, ξnk = 1 and ξnz = 1/α.

Next, we substitute out the intratemporal labor supply condition n̂ = ξncĉ+ξnkk̂+ξnz ẑ,

to obtained a linearized equilibrium consisting of the 3 × 3 system of linear stochastic

differential equations

 dĉ

dk̂

dẑ

 =

 ξcnξnc 0 ξcz + ξcnξnz

ξkc + ξknξnc ξkk + ξknξnk ξkz + ξknξnz

0 0 −ρz


︸ ︷︷ ︸

≡Γ

 ĉ

k̂

ẑ

 dt

+

 0 0

σk 0

0 σz


︸ ︷︷ ︸

≡Ψ

[
dwk

dwz

]
+

 −1

0

0


︸ ︷︷ ︸

≡Π

dε ,

which can be compactly written as

d˜̂x(t) = Γ˜̂x(t)dt+Ψdw(t) +Πdε(t) , (G.12)

where ˜̂x = [ĉ, k̂, ẑ]⊤ denotes the vector of variables in deviations from their deterministic

steady state, and where Γ, Ψ, and Π are the adjusted versions of Γ̃, Ψ̃, and Π̃. Note

that the volatility parameters σk and σz do not affect the matrix Γ characterizing the

endogenous persistence in the linearized equilibrium system. Therefore, they will not

have any effects on the implied optimal decision rules, and hence our approximated solu-

tion exhibits certainty equivalent in the sense of Simon (1956) and Theil (1957) (see Ahn

et al., 2018; Parra-Alvarez et al., 2021).
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G.5 Rational expectations solution

Following Sims (2002), let us assume that the matrix Γ can be diagonalized according to

Γ = TΥT−1 , (G.13)

where T is a 3 × 3 matrix of right-eigenvectors of Γ, and Υ is a diagonal matrix whose

diagonal elements are the eigenvalues of Γ. Premultiplying (G.12) by T−1 and defining

z(t) = T−1 ˜̂x(t) yields

dz(t) = Υz(t)dt+T−1Ψdw(t) +T−1Πdε(t) . (G.14)

The eigenvalues of the matrix Γ solve the characteristic equation |Γ− υI3| = 0. Thus, it

follows that the eigenvalues of Γ are given by υ1 = −ρz and the roots of the quadratic

equation

a0υ
2 + a1υ + a2 = 0 ,

with a0 = 1, a1 = − (ξcnξnc + ξkk + ξknξnk), and

a2 = (ξcnξncξkk + ξcnξncξknξnk) .

After some algebra, it is possible to show that

a1 = −ρ < 0 , and a2 = −(1− α) (ρ+ δ + η)

α

(
ρ+ (1− α) (δ + η)

α

)
< 0 .

Since a22 − 4a0a1 > 0 (the discriminant of the quadratic equation) and a2 < 0, the

quadratic equation has two distinct real roots of opposite sign, given by

υ2 = −(1− α)(δ + η + ρ)

α
< 0 , and υ3 =

(1− α)(δ + η) + ρ

α
> 0 .

Hence, the linearized system has two stable roots (non-positive eigenvalues, υ1 and υ2)

and one unstable root (positive eigenvalue, υ3). Since the reduced model in (G.12) has

two state variables and one control/jump variable, the Blanchard and Kahn conditions

are satisfied, and the model has a unique rational expectation solution (see Buiter, 1984).

The eigenvectors of Γ associated with each of its eigenvalues are given by multiples of

the vectors

T1 =
1

ι

 −(δ + η + ρ)

− (δ+η+ρ)((1−α)(δ+η)+ρ+ρz)
(1−α)(δ+η)+ρ+αρz

ι

 , T2 =


α(2(1−α)(δ+η)+(2−α)ρ)
(1−α2)(δ+η)+ρ

1

0

 , and T3 =
 0

1

0

 ,
where ι = (α− 1)(δ + η + ρ) + αρz.
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LetM+ be a 1×3 vector that selects the rows ofT−1 corresponding to eigenvalues with

positive real parts, and M− a 2× 3 matrix that selects the rows of T−1 corresponding to

eigenvalues with non-positive real parts. It follows that
(
M⊤

+M+ +M⊤
−M−

)
= I3. Then

M+dz(t) = M+Υz(t)dt+M+T
−1Ψdw(t) +M+T

−1Πdε(t) (G.15)

defines the equation associated with the unstable eigenvalue. To rule out explosive paths,

i.e., to ensure that lims→∞ Et [z(s)] < ∞ for s > t, and thus to satisfy the model’s

transversality condition, we impose

M+z(t) = 0 , ∀t , (G.16)

implying that

dε(t) = −
[
M+T

−1Π
]−1

M+T
−1Ψdw(t) . (G.17)

In other words, the stability condition imposes an exact relationship between the vector

of structural shocks and the expectation error, such that the system does not exhibit

explosive paths.

Once we impose the stability conditions (G.16) and (G.17), it is possible to compute

the solution associated with the stable eigenvalues by computing

M−dz(t) = M−Υz(t)dt+M−T
−1Ψdw(t) +M−T

−1Πdε(t) ,

which in turn implies that

dz(t) = Υ⋆z(t)dt+Ψ⋆dw(t) , (G.18)

where Υ⋆ = M⊤
−M−ΥM⊤

−M− is the 3×3 matrix of eigenvalues with zeros in the position

of the explosive paths, and

Ψ⋆ = M⊤
−M−T

−1
[
I3 −Π

[
M+T

−1Π
]−1

M+T
−1
]
Ψ

is a 3×2 matrix. Finally, we use the definition z(t) = T−1 ˜̂x(t) to obtain the autoregressive

representation of the rational expectation solution in the original variables,

d˜̂x(t) = Ã˜̂x(t)dt+ B̃dw(t) , (G.19)

where Ã = TΥ⋆T−1 and B̃ = TΨ⋆.

From the stability condition (G.16) and the definition of the transformed variable
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z(t), we find the optimal policy for consumption as

ĉ(t) = ϕckk̂(t) + ϕcz ẑ(t) , (G.20)

where ϕck = −(T32/T31), and ϕcz = −(T33/T31), with Tij the (i, j)-th element of the ma-

trix of T−1. Using the linearized condition for hours worked, the optimal policy for labor

is given by

n̂(t) = ϕnkk̂(t) + ϕnz ẑ(t), (G.21)

where ϕnk =
(
ξnk − ξnc

T32

T33

)
, and ϕnz =

(
ξnz − ξnc

T33

T31

)
.

As a final step, we eliminate the dependence of the system in (G.19) on the control

variables to obtain a system of SDEs that only describes the optimal dynamics of the

state variables. After some algebra, we obtain[
dk̂(t)

dẑ(t)

]
=

[
ϕkk ϕkz

0 −ρz

][
k̂(t)

ẑ(t)

]
dt+

[
σk 0

0 σz

][
dwk(t)

dwz(t)

]
, (G.22)

with

ϕkk = −(ã21T32)/T31 + ã22 = −(1− α)(δ + η + ρ)

α
< 0 ,

ϕkz = −(ã21T33)/T31 + ã23 =
(δ + η + ρ)((1− α)(δ + η) + ρ+ ρz)

α((1− α)(δ + η) + ρ+ αρz)
> 0 ,

where ãij is the (i, j)-th element of the matrix of Ã.5

Let ŷt = [ĉt, n̂t]
⊤ and x̂t = [k̂t, ẑt]

⊤ denote, respectively, the vector of control and

state variables in log-deviations from their steady state values. Then (G.22), together

with (G.20) and (G.21), have the continuous-time state space representation in (2.1) and

(2.2), i.e.,

dx̂(t) = Ax̂(t)dt+Bdw(t) ,

ŷ(t) = Cx̂(t) .

Real interest rate. Some of our simulation and empirical estimation exercises include

the real interest rate as an observable. In equilibrium, its value is determined by the

marginal productivity of capital, i.e.,

r(t) = α exp(z(t))k(t)α−1n(t)1−α − δ ,

5We compute the solution to the loglinearized equilibrium conditions using the PHACT toolbox
developed by Ahn et al. (2018), available at https://github.com/gregkaplan/phact/tree/master.
See the Readme.txt file in the accompanying replication codes for further details.
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with steady state value of r⋆ = α (k⋆)α−1 (n⋆)1−α − δ. Log-linearization leads to

r̂(t) = ϕrkk̂(t) + ϕrz ẑ(t) ,

where ϕrk = ((α− 1) + (1− α)ϕnk)
(
r⋆+δ
r⋆

)
and ϕrz = (1− (1− α)ϕnz)

(
r⋆+δ
r⋆

)
.

G.6 Data generating process: Solution and simulation

Solution. The data generating process (DGP) used in the Monte Carlo section corre-

sponds to the nonlinear solution to the RBC model described above. We approximate

the solution using collocation methods. In particular, we approximate the unknown policy

functions for consumption, c = c(k, z), and hours worked, n = n(k, z), with Chebyshev

polynominals of degree 7 over a grid of 7 Chebyshev nodes in each dimension of the state

space. The grid points lie between 50% and 150% of the deterministic steady-state val-

ues of the state variables. We use a root-finding algorithm to determine the coefficients

of the polynomials that make the approximated policy functions satisfy the maximized

Hamilton-Jacobi-Bellman equation in (G.2). We initialize the algorithm with the poly-

nomial coefficients implied by the linearized policy functions (G.20)-(G.21). Let c̃ (k, z)

and ñ (k, z)) denote the approximated policy functions.

Simulation. We simulate data from the model using the approximated policy functions.

We start the simulation at the model’s deterministic steady state, (k(0), z(0)) = (k0, z0) =

(k⋆, z⋆). We use an Euler discretization of the (controlled) stochastic differential equations

(5.3) and (5.6) with the control variables replaced by the approximations to simulate

T = 60 years of quarterly h = 1/4 data using a within-quarter time step equal to

∆ = 1/120. In particular, we compute

k(ti+1) = k(ti) +
(
exp (z(ti)) k(ti)

αñ (k(ti), z(ti))
1−α

−c̃(k(ti), z(ti))− (δ + η) k(ti)
)
(ti+1 − ti)

+σkki
√
ti+1 − ti ϵk(ti+1) ,

z(ti+1) = z(ti)− ρzz(ti) (ti+1 − ti) + σz
√
ti+1 − ti ϵz(ti+1) ,

for i = 1, . . . , T/(∆× h), where ϵk and ϵz are independent draws from a N (0, 1) random

variable, and ti+1 − ti = ∆× h.

Hence, the total number of simulated values is T/(∆ × h) = 28, 800 (note that

∆ × h = hn in Section 4). The sample of stock measurements is then constructed by

selecting all the end-of-quarter values of the variables. The sample of flows measurements

is constructed using the average of simulated values within a quarter (average over the

120 simulated data points in each quarter).
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H. State space representation

H.1 Common frequency data

S-SSR. In the S-SSR, the state and measurement vectors are given by xτ = xs
τ = [ksτ , z

s
τ ]

⊤

and yτ = ys
τ = [csτ , n

s
τ ]

⊤, so ns
x = 2, nf

x = 0, ns
y = 2, and nf

y = 0. We next compute the

selection matrices Sf
x, S

f
y , and Ss

y. The state-space representation (2.4)-(2.5) in Proposi-

tion 1 becomes [
ksτ

zsτ

]
= exp

([
ϕkk ϕkz

0 −ρz

]
h

)[
ksτ−1

zsτ−1

]
+

[
ηsk,τ
ηsz,τ

]
,[

csτ

ns
τ

]
=

[
ϕck ϕcz

ϕnk ϕnz

][
ksτ

zsτ

]
,

with [
ηsk,τ
ηsz,τ

]
=

ˆ tτ

tτ−1

exp

([
ϕkk ϕkz

0 −ρz

]
(tτ − u)

)[
σk 0

0 σz

][
dwk(u)

dwz(u)

]
.

F-SSR. In the F-SSR, the state and measurement vectors are given by xτ = [xs⊤
τ , xf⊤

τ ]⊤ =

[ksτ , z
s
τ , k

f
τ , z

f
τ ]

⊤ and yτ = yf
τ = [cfτ , n

f
τ ]

⊤, so ns
x = 2, nf

x = 2, ns
y = 0, and nf

y = 2. We next

compute the selection matrices Sf
x, S

f
y , and Ss

y. The state-space representation (2.4)-(2.5)

in Proposition 1 becomes
ksτ

zsτ

kfτ

zfτ

 =


exp

([
ϕkk ϕkz

0 −ρz

]
h

)
0 0

0 0[
ϕkk ϕkz

0 −ρz

]−1(
exp

([
ϕkk ϕkz

0 −ρz

]
h

)
− I2

)
0 0

0 0



ksτ−1

zsτ−1

kfτ−1

zfτ−1

+


ηsk,τ
ηsz,τ

ηfk,τ
ηfz,τ

 ,

[
cfτ

nf
τ

]
=

[
0 0

0 0

ϕck ϕcz

ϕnk ϕnz

]
ksτ

zsτ

kfτ

zfτ

 ,

with
ηsk,τ
ηsz,τ

ηfk,τ
ηfz,τ

 =

tτˆ

tτ−1


exp

([
ϕkk ϕkz

0 −ρz

]
(tτ − u)

)[
σk 0

0 σz

]
[
ϕkk ϕkz

0 −ρz

]−1(
exp

([
ϕkk ϕkz

0 −ρz

]
(tτ − u)

)
− I2

)[
σk 0

0 σz

]

[

dwk(u)

dwz(u)

]
.

MX-SSR. In the MX-SSR, the state and measurement vectors are given by xτ = [xs⊤
τ , xf⊤

τ ]⊤ =

41



[ksτ , z
s
τ , k

f
τ , z

f
τ ]

⊤ and yτ = [ys,⊤
τ ,yf⊤

τ ]⊤ = [rsτ , c
f
τ , n

f
τ ]

⊤, so ns
x = 2, nf

x = 2, ns
y = 1, and

nf
y = 2. We next compute the selection matrices Sf

x, S
f
y , and Ss

y. The state-space repre-

sentation (2.4)-(2.5) in Proposition 1 becomes
ksτ

zsτ

kfτ

zfτ

 =


exp

([
ϕkk ϕkz

0 −ρz

]
h

)
0 0

0 0[
ϕkk ϕkz

0 −ρz

]−1(
exp

([
ϕkk ϕkz

0 −ρz

]
h

)
− I2

)
0 0

0 0



ksτ−1

zsτ−1

kfτ−1

zfτ−1

+


ηsk,τ
ηsz,τ

ηfk,τ
ηfz,τ

 ,

 rsτ

cfτ

nf
τ

 =

 ϕrk ϕrz 0 0

0 0 ϕck ϕcz

0 0 ϕnk ϕnz



ksτ

zsτ

kfτ

zfτ

+

 1

0

0

 υr,τ ,

with
ηsk,τ
ηsz,τ

ηfk,τ
ηfz,τ

 =

tτˆ

tτ−1


exp

([
ϕkk ϕkz

0 −ρz

]
(tτ − u)

)[
σk 0

0 σz

]
[
ϕkk ϕkz

0 −ρz

]−1(
exp

([
ϕkk ϕkz

0 −ρz

]
(tτ − u)

)
− I2

)[
σk 0

0 σz

]

[

dwk(u)

dwz(u)

]
.

The values of {ϕkk, ϕkz, ϕck, ϕcz, ϕnk, ϕnz, ϕrk, ϕrz} can be found in Section G of this Online

Appendix.

H.2 Mixed-frequency data

Consider the case where measurements are sampled at two different frequencies, i.e., a

high frequency (short space between observations) h̄, and a low frequency h, with h > h̄.

Stock data. Rewrite the transition equation for the S-SSR, or the EM-SSR, in terms of

the time step corresponding to the highest frequency available, i.e., h̄. Similarly, rewrite

the measurement equation as yτ = WτC(θ), where Wτ is a known time-varying matrix

whose rows at a given point in time are a subset of the rows of Iny . More specifically, the

number of rows at time tτ is determined by the number of variables for which observations

are available at tτ .

For the RBC model discussed in the main text, we consider monthly observations

(h̄ = 1/12) on aggregate consumption, csτ , and quarterly observations (h = 1/4) on the

fraction of hours worked, ns
τ . Assume that there is no measurement error, i.e., υτ = 0
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for all τ . Then the S-SSR for mixed-frequency data sampling is given by[
ksτ

zsτ

]
= exp

([
ϕkk ϕkz

0 −ρz

]
h̄

)[
ksτ−1

zsτ−1

]
+ ηs

τ , (H.1)[
csτ

ns
τ

]
= Wτ

[
ϕck ϕcz

ϕnk ϕnz

][
ksτ

zsτ

]
, (H.2)

with Wτ = [ 1 0 ] when τ coincides with observations recorded at points in time within

a quarter (so only cτ is available), and Wτ = Iny when τ coincides with observations

recorded at the end of a quarter (so both csτ and ns
τ are available). The Kalman filter

recursions proceed accordingly by accommodating the missing values of the variables

sampled at low frequencies, see Durbin and Koopman (2012, Chp. 4.10).6

Notice that the state space representation (H.1)-(H.2) is the same as that for the

S-SSR, or the EM-SSR, with Wτ = Iny for all τ , in the case of a common sampling

frequency.

Flow data. The state space representation for flow variables is more involved than that for

stock data, because we need to keep track of the unobserved time aggregation occurring

at “high” frequencies of the variables sampled at lower frequencies. This can be achieved

by introducing a number of additional deterministic states that measure the unobserved

behavior of the flow variables within the time intervals for which observations are not

available. As for the stock case, the state space representation is written in terms of the

time step associated with the highest frequency, h̄.

For the RBC model discussed in the main text, we consider monthly observations

(h̄ = 1/12) on aggregate consumption, cfτ , and quarterly observations (h = 1/4) on the

fraction of hours worked, nf
τ . Assume that there is no measurement error, i.e., υτ = 0 for

all τ . Define by C(θ)n,• the row of C(θ) related to measurement nf . Then the F-SSR

6The case of mixed-frequency sampling frequency has been addressed in the context of state space
models by Harvey and Pierse (1984), Zadrozny (1988), Harvey (1990), Zadrozny (1990), Mariano and
Murasawa (2003), Aruoba et al. (2009), Ghysels and Wright (2009), Kuzin et al. (2011), and Bai et al.
(2013), among others.
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for mixed-frequency sampling is given by

ksτ

zsτ

kfτ

zfτ

nf
τ−1

nf
τ−2


=


Ah̄(θ) 04×4A(θ)−1(Ah̄(θ)− I)

02×2
0 C(θ)n,• 0 0

0 0 1 0





ksτ−1

zsτ−1

kfτ−1

zfτ−1

nf
τ−2

nf
τ−3


+


ηs
τ

ηf
τ

0

0

(H.3)

[
cfτ

nf
τ

]
= Wτ

[
02×2 C(θ)

0 0

1 1

]


ksτ

zsτ

kfτ

zfτ

nf
τ−1

nf
τ−2


, (H.4)

where Wτ is defined as in the stock case. Notice that at any point in time, tτ , the

observed fraction of hours worked in (H.4), sampled at a lower frequency h, nf
τ , is related

to the higher frequency state equations according to

nf
τ = nf (tτ ) =

ˆ tτ

tτ−h

n(u)du

=

ˆ tτ

tτ−h

n(u)du+

ˆ tτ−h

tτ−2h

n(u)du+

ˆ tτ−2h

tτ−h

n(u)du

= nf
τ + nf

τ−1 + nf
τ−2 ,

where nf
τ :=

´ tτ
tτ−h

n(u)du, nf
τ−1 :=

´ tτ−h

tτ−2h
n(u)du, and nf

τ−2 :=
´ tτ−2h

tτ−h
n(u)du.

Remark H.1 The transition equations for the additional deterministic state variables in

(H.3), i.e., those associated with nf
τ−2 and n

f
τ−3, do not depend on the vector of unknown

parameters. Therefore, it is possible to use θ estimated from observations sampled at a

low frequency h to recover state estimates at a higher frequency h by simply using the

state space representation in (H.1)-(H.2) or (H.3)-(H.4) together with any filtering algo-

rithm that handles missing observations. This means that the model does not need to be

re-estimated if the analysis entails the same variables observed at different frequencies.

44



I. Additional tables

I.1 Finite sample properties for extended vector of parameters

Table I.1. Finite sample properties for extended vector of parameters. The table reports
statistics for estimates of θ = [ρ, η, ρz, σz, σk]

⊤ from M = 10, 000 samples of quarterly (h = 1/4)
observations on aggregate consumption (C) and hours worked (N), generated over a period
of 60 years (T = 240 observations in each sample). Simulated measurements in Panel A are
sampled as stocks, and those in Panel B as flows. The share of capital in output, α, and the
depreciation rate, δ, are calibrated to their population values in Table 1. Let θ̂m denote the
estimates from the m-th sample. The table shows bias (Bias = M−1

∑M
m=1(θ̂m − θ0)) and root

mean squared error (RMSE = (M−1
∑M

m=1(θ̂m − θ0)
2)1/2) across repetitions.

Panel A: Data sampled as stocks

F-SSR S-SSR EM-SSR

θ Bias RMSE Bias RMSE Bias RMSE

ρ 0.03 0.0005 0.0016 0.0001 0.0016 4.13e-05 0.0016

η 0.02 0.0006 0.0023 4.22e-05 0.0022 -0.0001 0.0022

ρz 0.2052 0.0250 0.0343 0.0179 0.0274 -0.0171 0.0239

σz 0.014 0.0043 0.0044 -0.0001 0.0007 -0.0001 0.0007

σk 0.0104 0.0032 0.0033 -0.0001 0.0005 -0.0004 0.0006

Panel B: Data sampled as flows

F-SSR S-SSR EM-SSR

θ Bias RMSE Bias RMSE Bias RMSE

ρ 0.03 0.0001 0.0016 -3.35e-05 0.0016 -0.0002 0.0018

η 0.02 4.53e-05 0.0022 -0.0002 0.0022 -0.0006 0.0027

ρz 0.2052 0.0177 0.0272 0.0117 0.0239 -0.0223 0.0282

σz 0.014 -0.0001 0.0007 -0.0026 0.0027 -0.0026 0.0027

σk 0.0104 -0.0001 0.0005 -0.002 0.002 -0.0022 0.0023
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I.2 Finite sample properties for linearized DGP

Table I.2. Finite sample properties, data simulated from the linearized economy. The table
reports statistics for estimates of θ = [ρz, σz, σk]

⊤ from M = 10, 000 samples of quarterly
(h = 1/4) observations on aggregate consumption (C) and hours worked (N), generated over
a period of 60 years (T = 240 observations in each sample). Simulated measurements in
Panel A are sampled as stocks, and those in Panel B as flows. Remaining parameters are
calibrated to their population values in Table 1. Let θ̂m denote the estimates from the m-th
sample. The table shows bias (Bias = M−1

∑M
m=1(θ̂m − θ0)) and root mean squared error

(RMSE = (M−1
∑M

m=1(θ̂m − θ0)
2)1/2) across repetitions.

Panel A: Data sampled as stocks

F-SSR S-SSR EM-SSR

θ Bias RMSE Bias RMSE Bias RMSE

ρz 0.2052 0.0066 0.0222 0.0019 0.0189 -0.0295 0.0332
σz 0.014 0.0043 0.0044 -0.0001 0.0007 -0.0001 0.0007
σk 0.0104 0.0032 0.0033 -4.64e-05 0.0005 -0.0003 0.0006

Panel B: Data sampled as flows

F-SSR S-SSR EM-SSR

θ Bias RMSE Bias RMSE Bias RMSE

ρz 0.2052 0.0017 0.0189 -0.0029 0.0191 -0.0321 0.0358
σz 0.014 -0.0001 0.0007 -0.0026 0.0027 -0.0026 0.0027
σk 0.0104 -4.96e-05 0.0005 -0.002 0.002 -0.0022 0.0022
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I.3 Normality tests

Table I.3. Normality tests. Battery of normality tests for estimated F-SSR without measure-
ment error (see Table 4, first column). The table reports test statistics and associated p-values
(in brackets) for alternative tests assessing the normality of the prediction errors, ντ |τ−1. The
tests are performed over different subperiods of the full estimation period, as indicated in col-
umn “Period”. The tests are the Shapiro-Wilk test (SW, Shapiro and Wilk, 1965) of univariate
normality of the prediction errors associated with consumption, vC , and hours worked, vN ; the
Kolmogorov-Smirnov test (KS) on vC , and vN ; the Jarque-Bera test (JB); and the omnibus ap-
proximate normality test (DH, Doornik and Hansen, 2008). The null of Gaussianity is rejected
at the 5% level for p-values less than 0.05. The first observations from 1960 are excluded from
the exercise.

Period
SW KS JB DH

νC νN νC νN νC νN (νC , νN )

01-Jul-1960 - 01-Oct-2019
0.99 0.95 0.08 0.07 5.71 55.83 30.44

[0.035] [4e-06] [0.127] [0.167] [0.050] [0.001] [4e-06]

01-Jul-1960 - 01-Jul-1967
0.98 0.96 0.20 0.15 0.34 1.13 1.32

[0.796] [0.406] [0.195] [0.504] [0.500] [0.396] [0.858]

01-Jul-1967 - 01-Jul-1974
0.92 0.94 0.14 0.13 2.29 1.86 9.61

[0.042] [0.142] [0.633] [0.700] [0.129] [0.184] [0.048]

01-Jul-1974 - 01-Jul-1981
0.98 0.92 0.16 0.10 0.31 4.92 12.47

[0.806] [0.045] [0.400] [0.934] [0.500] [0.041] [0.014]

01-Jul-1981 - 01-Jul-1988
0.97 0.87 0.13 0.23 0.74 9.59 12.51

[0.480] [0.004] [0.677] [0.084] [0.500] [0.013] [0.014]

01-Jul-1988 - 01-Jul-1995
0.96 0.96 0.07 0.12 1.46 1.19 6.90

[0.308] [0.350] [0.996] [0.798] [0.283] [0.371] [0.141]

01-Jul-1995 - 01-Jul-2002
0.92 0.98 0.09 0.12 7.61 0.85 11.38

[0.036] [0.726] [0.971] [0.774] [0.020] [0.500] [0.023]

01-Jul-2002 - 01-Jul-2009
0.98 0.86 0.10 0.20 0.27 7.88 3.84

[0.786] [0.003] [0.928] [0.190] [0.500] [0.019] [0.427]

01-Jul-2009 - 01-Jul-2016
0.96 0.97 0.09 0.16 1.21 0.30 5.17

[0.300] [0.465] [0.945] [0.412] [0.366] [0.500] [0.270]
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J. Additional figures

J.1 Measurements

Figure J.1. Measurements. The figure shows the time series of observed measurement used
in the different ML estimations reported in the paper: Annualized monthly (dashed line) and
quarterly (dots) growth rate of real aggregate consumption per capita (top exhibit); logarithm
of quarterly hours worked, expressed as percentage deviation from steady state (middle); and
quarterly gross annual real interest rate (bottom) for the U.S., over the period from 1960 through
2019. Light gray vertical bands indicate NBER recessions.
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J.2 Structural shocks, mixed sampling
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(a) Structural shocks

(b) Mean Squared Errors

Figure J.2. Structural shocks, mixed sampling. Exhibit (a) shows the time series of structural
shocks to TFP, ũz (top portion of exhibit), and capital stock, ũk (bottom portion), recovered
from a simulated sample of flows for consumption, C, and stocks for the interest rate, r.
Exhibit (b) shows distributions of the mean squared error (MSE) between the true (simulated)
structural shocks and their recovered (smoothed) counterparts. Each boxplot represents the
distribution of MSE across Monte Carlo replication.
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J.3 Log-likelihood profiles
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Figure J.3. Log-likelihood profiles. The figure shows the log-likelihood function L(θ|yT ) for each
of the parameters σk, ρz, and σz, keeping the remaining parameters at their population values
in Table 1, and for each of the methods S-SSR, EM-SSR, and F-SSR. Simulated measurements
are sampled as stocks in Panel A, and as flows in Panel B. The vertical solid line shows the true
population value of the parameter. Graphs are generated using a single simulated sample of
quarterly observations for a period of 60 years. Different samples provide similar conclusions.
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J.4 Latent states

Figure J.4. Latent states (F-SSR method). Smoothed monthly and quarterly series for aggre-
gate capital stock and TFP (% deviations from corresponding steady-state values). The sample
covers the period from 1960 trough 2019. The series are obtained by the F-SSR method after
parameter estimation and state smoothing, for measurements using quarterly aggregate con-
sumption and hours worked for the quarterly estimates, monthly aggregate consumption and
quarterly hours worked for the monthly estimates. Light gray vertical bands indicate NBER
recessions.
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K. Historical shock decomposition

K.1 Derivation of Equation (6.1)

The historical shock decomposition (see Lütkepohl, 2005 and Canova 2007) links the

structural shocks of the system to the observables. Given Assumption 1 and Proposition 4,

let ϵ := η in the ABCD representation (2.12)-(2.13), so that there is no measurement error,

wlog. Then the transition equation can be written as

xτ = (Inx − A(θ, h)L)−1B(θ, h)H(θ)uτ +OP (h
3/2) =

∞∑
j=0

A(θ, h)jB(θ, h)H(θ)uτ−j +OP (h
3/2) .

We disregard the OP (h
3/2) term and substitute the definition of xτ in the measurement

equation to obtain

yτ+1 = C(θ, h)(Inx − A(θ, h)L)−1B(θ, h)H(θ)uτ + D(θ, h)H(θ)uτ+1

= C(θ, h)
∞∑
j=0

A(θ, h)jB(θ, h)H(θ)uτ−j + D(θ, h)H(θ)uτ+1 ,

where L := Lh = L(h) is the lag operator, such that Lxτ = xτ−1. Conditioning on the

beginning of the sample, the transition equation can be alternatively written as

xτ = A(θ, h)τx0 +
τ−1∑
j=0

A(θ, h)jB(θ, h)H(θ)uτ−j ,

so the structural shocks are related to the measurements through

yτ+1 = C(θ, h)A(θ, h)τx0 + D(θ, h)H(θ)uτ+1 + C(θ, h)(Inx − A(θ, h)L)−1B(θ, h)H(θ)uτ

= C(θ, h)A(θ, h)τx0 + D(θ, h)H(θ)uτ+1 + C(θ, h)
τ−1∑
j=0

A(θ, h)jB(θ, h)H(θ)uτ−j .

The historical contributions of the individual structural shock ui, i = 1, . . . ,mw to the

measurements at the τth observation are then given by selecting and propagating the

individual shocks one at a time. In our analysis, we use the ML estimates θ̂ of the

structural parameters. Additionally, we replace the unobserved x0 and u with their

smoothed estimates, using approximations ũ instead of u.
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K.2 Decomposition using S-SSR method

Figure K.1. Historical shock decomposition (S-SSR method). The figure shows the separate
historical contributions of the structural shocks to capital (demand) and technology (supply,
TFP) recovered by the S-SSR method from the observed measurements of consumption and
hours worked over the period from 1948:Q1 through 2019:Q4. The black solid line in the
upper panel represents annual consumption growth rates, and that in the lower panel quarterly
percentage deviations of hours worked from its steady state (n⋆ = 33%). Light gray vertical
bands indicate NBER recessions.
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K.3 Decomposition using EM-SSR method

Figure K.2. Historical shock decomposition (EM-SSR method). The figure shows the separate
historical contributions of the structural shocks to capital (demand) and technology (supply,
TFP) recovered by the EM-SSR method from the observed measurements of consumption and
hours worked over the period from 1948:Q1 through 2019:Q4. The black solid line in the
upper panel represents annual consumption growth rates, and that in the lower panel quarterly
percentage deviations of hours worked from its steady state (n⋆ = 33%). Light gray vertical
bands indicate NBER recessions.
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K.4 Decomposition using MX-SSR method

Figure K.3. Historical shock decomposition (MX-SSR method). The figure shows the separate
historical contributions of the structural shocks to capital (demand) and technology (supply,
TFP) recovered by the MX-SSR method from the observed measurements of consumption,
hours worked, and the real interest rate over the period from 1948:Q1 through 2019:Q4. The
black solid line in the upper panel represents annual consumption growth rates, and that in the
lower panel quarterly percentage deviations of hours worked from its steady state (n⋆ = 33%).
Light gray vertical bands indicate NBER recessions.
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