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Abstract

This note axiomatizes the incomplete preference ordering that reflects statewise dominance with

respect to expected utility, as well as the according choice correspondence. The main motivation is

to clarify how admissibility as understood by statisticians relates to existing axiomatizations. The

answer is that it is characterized by Anscombe and Aumann’s (1963) axioms, plus symmetry (Ar-

row and Hurwicz (1972)), less completeness. Characterizing the according choice correspondence

requires relaxing the weak axiom of revealed preference.
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1 Introduction

This note provides an axiomatic characterization of the incomplete preference ordering described by

 %  ⇐⇒
∙Z

()() ≥
Z

()()∀ ∈ S
¸

(1)

as well as the corresponding choice rule

() = { ∈ :  Â  for no  ∈} (2)

Here, Â is the asymmetric component of %,  and  are lottery-acts inducing objective probability

distributions () and () over outcomes  in state of the world  ∈ S,  is a utility function, and a

menu is a set of acts. In words,  is preferred over  if it statewise dominates  in terms of expected

utility.

The motivation for this investigation is that % corresponds to dominance of risk functions and

membership in  to admissibility of a decision rule in the sense that these words are used in statistics.1

∗Address: Jörg Stoye, Department of Economics, Cornell University, Uris Hall, Ithaca, NY 14853, stoye@cornell.edu.
1 See Ferguson (1967) for a classic textbook account.
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At the same time, different subsets of the axioms used are known to characterize numerous complete

preferences, notably expected utility, maximin utility, and minimax regret. These axioms cannot jointly

be fulfilled by a complete preference, yet they characterize % upon dropping completeness. Thinking

of completeness as a pragmatic requirement rather than a substantive condition of rationality, one

could, therefore, say that admissibility exhausts the overlap between many reasonable decision rules

in a precise axiomatic sense.2 Extending the characterization to  requires additional work because

 does not fulfil the weak axiom of revealed preference (WARP, defined precisely below) and it is not

true that  %  iff  is chosen from { }.
The next section presents and discusses the main result for %, and section 3 extends the charac-

terization to . Relations to the literature are explained along the way.

2 Main Result

Consider a set X of ultimate outcomes , the set ∆X of finite lotteries      over such outcomes,

and a state space S with typical element  and sigma-algebra Σ. Acts       ∈ F are finite,

Σ-measurable functions from S into ∆X that map states  onto lotteries () ∈ ∆X . An act is
constant if () does not depend on . The only restriction on S is that it must contain three distinct
states. With the usual abuse of notation, ∆X will be embedded in F by identifying constant acts with
the corresponding lotteries. Mixtures between acts are defined as statewise probabilistic mixtures:

( + (1 − ))() = () + (1 − )(). Attention will initially be on a preference relation % on

F ×F and on the following axioms.

P.1: Transitivity

 %  %  =⇒  % 

P.2: Completeness on Constant Acts

 %  or  % 

for all constant acts   ∈ ∆X .
P.3: Monotonicity

If () % () for all  ∈ S, then  % .

P.4: Independence

 %  ⇐⇒  + (1− ) %  + (1− )

2 Indeed, this paper was spawned by the observation that column 1 in table 1 of Stoye (2011b) is not provided in the

literature. See the same survey for more background, interpretation, and references.
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for all acts    and scalars  ∈ (0 1).
P.5: Continuity

There are no acts    s.t.  + (1− ) Â  for all  ∈ [0 1) but  ≺  or vice versa.

P.6: Nontriviality

 Â  for some acts  .

P.7: Symmetry

For any acts   and disjoint, nonempty events  ∈ Σ s.t. both  and  are constant on  as

well as  ,

 %  ⇐⇒  0 % 0

where  0 is defined by

 0() =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
()k∈   ∈ 

()k∈   ∈ 

() otherwise

and 0 is defined analogously.

P.1-6 are Anscombe and Aumann’s (1963) axioms with two modifications: Completeness is only

imposed on constant acts, and continuity is weakened along the lines of Aumann (1962). One could

strengthen P.5 to mixture continuity, i.e. closedness of weak upper contour sets, without affecting the

result. The improvement reported here will be important in the next section, however. Moreover,

without completeness, mixture continuity is not equivalent to openness of strict upper contour sets.

The latter will actually be failed, as will the usual Archimedean axiom ( Â  Â ⇒  + (1− ) Â
 Â +(1−) for some   ∈ (0 1)). Symmetry (Arrow and Hurwicz (1972)) is designed to prevent
any imposition of prior weighting among states. It is plausible if, and only if, no prior information

about differential plausibility etc. of states is available.

The first main result is as follows:

Theorem 1 A preference % fulfils axioms P.1-7 iff it can be expressed as in (1), where  : X → R is

unique up to positive affine transformation.

Proof. I only show “only if.” First, the restriction of % to constant acts   ∈ ∆X is von Neumann-
Morgenstern expected utility by Herstein andMilnor (1953), thus there exists  with claimed properties

s.t.  %  ⇔ R
()() ≥ R ()().3 Next, define the mapping (“utility act”)  ◦  : S → R

by  ◦ () = R
()(). Then  ◦ () ≥  ◦ () for all  implies  %  by monotonicity. Also

3Mixture continuity, used by Herstein and Milnor (1953), can be derived from solvability, completeness, and indepen-

dence. But in their first use (their theorem 1), P.5 will obviously do, and the second use (their theorem 2) is redundant

given the stronger independence axiom used here.
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using transitivity,  ◦  =  ◦  implies  ∼  as well as  %  ⇔  %  for all ; thus, utility acts

define equivalence classes among acts. I will henceforth equate acts with utility acts. Nontriviality

now implies that the range of  is not a singleton, thus it can be normalized to contain {−1 1}. Every
Σ-measurable step function  : S → [−1 1] then corresponds to an existing (utility) act. Let 0 be the
constant act with zero utility. Independence, used with 0 as mixing act, implies that  %  ⇔  % 

for every  ∈ (0 1). If the range of  is bounded, this suggests an obvious (namely the homothetic)

extension of % to the set of Σ-measurable functions  : S → R, and the remainder of this proof can

be carried out on the extension first. I will henceforth presume that the range of  is unbounded.

Define  ª  by  ◦ ( ª )() =  ◦ ()−  ◦ (), then repeated uses of independence (using −
and 0 as mixture acts) yield  %  ⇔  ª  % 0. Consider any nonconstant act  , define  [ ] as the

constant act with utility value min∈S  ◦ () [max∈S  ◦ ()], let  [] be the event on which this

utility is achieved, and write  for the act that agrees with  on event  and with  otherwise. Then



 %  %  by monotonicity. Yet also 


 % 0 ⇔  % 0 ⇔  % 0 by symmetry. Also

using independence, monotonicity, and transitivity, it follows that there exist numbers   ≥ 0 s.t.
min∈S ◦()+max∈S ◦()  0 implies  Â 0 and min∈S ◦()+max∈S ◦()  0
implies that not  % 0. Suppose by contradiction that   0. Let the constant acts ( ) have

utility values (1 + 3−2) and let {} partition S into nonempty events (existence of three
distinct states ensures feasibility of this), then it would follow that   Â 0,  Â 0, but not

1
2
  +

1
2
 % 0. This is a contradiction because   Â 0 ⇒ 1

2
  +

1
2
 Â 1

2
0 +

1
2
 and

 Â 0 ⇒ 1
2
0 +

1
2
 Â 0 by independence, thus

1
2
  +

1
2
 Â 0 by transitivity. Thus  = 0,

hence min∈S  ◦ () ≥ 0 is necessary for  % 0; it is sufficient by monotonicity.

This model can be contrasted with a multiple prior version whereby  %  iff
R
 ◦ () ≥R

 ◦ () for all priors  in a convex set Γ, as recently axiomatized by Gilboa et al. (2010). The
present, “prior-less” version corresponds to the case where Γ collects all distributions on (SΣ). Gilboa
et al.’s (2010) axioms imply P.1-P.5, thus theorem 1 establishes that adding symmetry to them enforces

the maximal set of priors. However, the above proof is brief, self-contained, elementary, and weakens

continuity. In earlier work, Bewley (2002) uses a finite state space and takes strict preference as

primitive, leading to some differences in axioms and results. In particular,  must be strictly better

than  under all priors to be strictly preferred to , and all priors  ∈ Π must have full support; thus,
this paper’s model is not embedded. Stoye (2011a) axiomatizes a ranking that resembles % in not

using priors but resembles Bewley’s in that strict preference requires everywhere strict dominance. In

addition, the ranking is complete; loosely speaking, noncomparabilities are replaced with indifferences,

and this is axiomatized by relaxing transitivity.
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3 Extension to Choice Correspondences

A “revealed preference” perspective suggests choices as primitive objects of analysis because they are

directly observable. Thus, consider a choice correspondence  that maps finite menus  ⊂ F onto

nonempty choice sets () ⊆  and consider imposing axioms on  rather than %. Well known
consistency conditions for  are:

WARP (Arrow (1959)4)

( ∪) ∩ ∈ {()∅} for all menus  .

Property α (Chernoff (1954), Sen (1969))

( ∪) ∩ ⊆ () for all menus  .

Imposing WARP would lead to an immediate dualism between choice and preference (Arrow

(1959)): Define the preference revealed by  as “ D  if  ∈ ({ })” and the choice corre-
spondence induced by a preference relation D as D () = { ∈  :  ∈  ⇒  D }, then WARP
implies that D is transitive and that D = . This all fails here: The  in (2) fulfils property 

(which is listed for subsequent use) but fails WARP, D is intransitive, and %6=D% . To characterize

 anyway, one needs the following axioms.

C.1: Admissibility

If   ∈ and  ∈ ({() ()}) for all , then  ∈ ()⇒  ∈ ().

C.2: Strict Admissibility

If   ∈ ,  ∈ ({() ()}) for all , and ({() ()}) = {()} for some , then  ∈ ().

C.3: Weak Axiom of Revealed Non-Inferiority

(WARNI; Bandhyopadhay and Sengupta (1993), Eliaz and Ok (2006))

Say that  globally blocks  if  ∈  ⇒  ∈ () for all  . Then for all  ,  ∈ ()

implies that some  ∈ () globally blocks  .

C.4: Independence

( + (1− )) = () + (1− )

for all menus  , acts  , and scalars  ∈ (0 1), where

 + (1− ) = { ∈ F :  =  + (1− )  ∈}

C.5: Continuity

If ({ }) = {} and ({ }) = {}, then there exists  ∈ (0 1) with ({ + (1− ) }) =
{ + (1− ) }.

4 I avoid Arrow’s label (“Independence of Irrelevant Alternatives”) for terminological consistency with WARNI and

to avoid confusion with social choice theory.
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C.6: Nontriviality

There exists  s.t. () 6= .

C.7: Symmetry

Fix any menu  and disjoint, nonempty events  ∈ Σ s.t. any  ∈ is constant on  as well

as  . Define  0 as before. Then  ∈ ()⇔  0 ∈ ({0 :  ∈})

Axioms C.4-7 much resemble P.4-7. Weakening continuity in analogy to axiom P.5 is now crucial

because  is not upper hemicontinuous, and D fails all standard continuity axioms. Axioms C.1-3

are less similar to P.1-3 because it is intricate to choice theoretically distinguish indifference from non-

comparability. For example, D conflates the two, rendering it complete yet intransitive. Indeed, the

strengthening of monotonicity in axiom C.2 compensates for an inability to directly impose transitiv-

ity; it is this axiom (and not transitivity as before) that eliminates the prior-less version of Bewley’s

(2002) model. Note also that (as shown in the proof) axioms C.1 and C.3 jointly imply WARP for

constant acts and that WARNI is easily verified to imply property .

This section’s technical result is as follows.5

Theorem 2  fulfils axioms C.1-6 iff it can be written as in (2), with % as in theorem 1.

Proof. Initially restrict attention to menus of constant acts ⊂ ∆X . Then WARP is implied: For
any ⊂ ∆X , (∪)∩ ⊆ () by the property  implication of WARNI. If (∪)∩ ∈
{()∅}, then there exist  ∈ ( ∪) and  ∈ ()( ∪). Property  applied to ()

yields ({ }) = { }, contradicting axiom C.1 applied to  ∪  . Combining Arrow (1959) and
Herstein and Milnor (1953), it now follows that  is rationalized by expected utility maximization.

On the general domain, let  Â  if ({ }) = {}. Then Â rationalizes  in the sense of (2). To

see this, fix any menu  and act  ∈  . If  ∈ (), then some  ∈ () globally blocks  . The

definition of global blocking then implies  Â  . If  ∈ (), then  Â  for no  ∈  because

any such  would block  globally and, therefore, in  . Next, Â is transitive: Let ({ }) = {}
and ({ }) = {}, then ({  }) = {} by WARNI (both  and  are globally blocked), thus

 globally blocks , thus ({ }) = {}. The following claims are then easily shown by mimicking
the preceding proof (whose notation is freely used): Utility acts constitute equivalence classes; one

5Taking revealed preference really seriously, one might remark that in many applications including statistical decision

theory, agents can randomize, thus one cannot observe choice from finite menus but only from the corresponding mixture

sets, which here coincide with their convex hulls. The directly revealed preference might then be even more incomplete

than “true” preference, namely if  %  yet choice from the convex hull { } is a proper mixture of the two. In
general, this leads to substantial complications (Stoye (2011b) and references therein). These do not arise here because

if  + (1− ) ∈ ({ }), then  + (1− ) ∈ ({ + (1− ) }) by the property  implication of WARNI,

thus  ∈ ({ }) by independence.
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can proceed as if the range of  were unbounded; and  Â  ⇔  ª  Â 0. Consider now any

act  that takes at least three different utility values, then 

 Â  Â  by strict admissibility.

Transitivity then yields  Â 0 ⇒  Â 0 and  Â 0 ⇒ 

 Â 0, while symmetry yields



 Â 0 ⇔  Â 0 ⇔  Â 0. Hence, attention can be restricted to acts of form  as before.

The last part of the previous proof can then be mimicked to show that min∈S ◦() ≥ 0 is necessary
for  Â 0; on the other hand, min∈S  ◦ () ≥ 0 and  6= 0 is sufficient by axiom C.2.
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