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Abstract

This paper develops easily computed, tight bounds on Generalized Linear Predictors and in-

strumental variable estimators when outcome data are partially identi�ed. A salient example is

given by Best Linear Predictors under square loss, or Ordinary Least Squares regressions, with

missing outcome data, in which case the setup specializes the more general but intractable problem

examined by Horowitz et al. [9]. The result is illustrated by re-analyzing the data used in that

paper.
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1 Introduction

This paper provides an exact characterization of bounds on Generalized Linear Predictors when con-

ditional distributions, and in some cases expectations, of outcome data are interval identi�ed. Thus,

it extends research on �partial identi�cation� in econometrics �see the recent survey by Manski [11]

and speci�cally the analysis in Horowitz et al. [9], to which the present contribution is related. The

problem solved here can also arise in the context of interval computations (as in Ferson et al. [4]) as

well as in Robust Bayesian analysis (as in Wasserman and Kadane [14]). A similar scenario has been

considered by Vansteelandt and Gothgebeur [13], but whilst their analysis is in several ways more gen-

eral, it does not yield the (essentially) closed-form results presented here. Zhilin [15] analyzes interval

observations on outcomes, which is a special case of the present setup, but he is rather interested in

the relative performance, under various distributional assumptions, of di¤erent methods of selecting a

predictor from within the bounds.

Consider a scalar outcome variable Y and a row vector of explanatory variables X 2 RJ . (I will

use capital letters for random variables and minor letters for their realizations.) Let the population

distribution of (Y;X) be characterized by the cumulative distribution function Fyx with marginal

distribution Fx of X and conditional distribution Fyjx of (Y jX). Assume a researcher has observed a

realization of X and needs to predict the corresponding realization of Y . Substantively, the problem

could be to predict reactions to medical treatments or �as in this paper�s application �job market

outcomes from personal characteristics. One approach is to use a Generalized Linear Predictor bY of

Y from X, which is given by

bY = G(x�)

� �
�Z

x0xdFyx

��1 Z
x0G�1(y)dFyx

= (EX 0X)
�1
EX 0G�1(Y );

where G : R! R is some pre-assigned, strictly increasing function, the prime symbol is used to denote

transposes, and the vector of coe¢ cients � is often of independent interest. Important examples include

Best Linear Prediction under square loss or Ordinary Least Squares regression, where

bY = x�

� = (EX 0X)
�1
EX 0Y; (1)

and Best Logit Prediction under square loss, where Y is binary and

bY =
exp(x�)

1 + exp(x�)

� = (EX 0X)
�1
EX 0 log (P(Y = 1jX)=P(Y = 0jX)) :
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Generalized Linear Predictors are appropriate in the sense that they are the best possible decision rule

if the loss function �that is, the penalty incurred for misprediction �is the square of the prediction

error, and if one either assumes that the data-generating process is described by E(Y jX = x) = G(x�),

or for practical reasons restricts the predictor to be of the generalized linear form; see, e.g., [5].

But � and bY can be computed only if Fyx is known or can be estimated; in econometric parlance,

it has to be identi�ed. This condition often fails in practice, in which case it is of interest to compute

bounds on these objects that exploit as much as possible of the existing information. The speci�c case

I will consider is the one in which the conditional distribution Fyjx is interval identi�ed, hence one

knows or can estimate (in the statistical sense) conditional cumulative density functions F yjx(y; x) and

F yjx(y; x) s.t. F yjx(y; x) � Fyjx(y; x) � F yjx(y; x) for all (y; x). If the link function G is linear, this

condition can be replaced with bounds on conditional expectations, i.e. functions E(x) and E(x) s.t.

E(x) � E(Y jX = x) � E(x) for any x. For these setups, I will provide bounds that can be instantly

computed, as well as su¢ cient conditions for them to be tight.

A salient application is the case of missing observations. Speci�cally, assume that conditional on

X = x, a fraction m(x) of realizations of Y are missing. Then

(1�m(x)) � F �yjx(y; x) � Fyjx(y; x) � (1�m(x)) � F �yjx(y; x) +m(x); (2)

where F �yjx(y; x) is the conditional distribution of those Y that are observed. The intuition behind this

expression is that by simple probability calculus,

P(Y � yjx) = (3)

P(Y � yjx; y is observable)P(y is observablejx) +P(Y � yjx; y is missing)P(y is missingjx);

and one knows that P(Y � yjx; y is observable) = F �yjx(y; x), P(y is missingjx) = m(x), P(y is

observablejx) = 1 � m(x), and that P(Y � yjx; y is missing) 2 [0; 1]; substituting these facts into

(3) justi�es (2). If one additionally restricts attention to Best Linear Predictors, i.e. � as in (1),

the setup becomes a simpli�cation of [9], who allow for arbitrary patterns of missingness in the data

vector (Y;X). However, their bounds are analytically intractable, and the authors are only able to

approximate them by a very expensive genetic algorithm and to provide cheap but, as it turns out,

extremely slack outer bounds. Apart from exactly solving an important special case, I also show how to

improve analysis of the general problem by reducing its dimensionality; speci�cally, any optimization

algorithm should operate on X only, with missing values of Y being ��lled in�according to the results

developed below. Furthermore, the present analysis makes explicit the �worst-case scenarios�under

which the bounds obtain. Since these scenarios will often be substantively implausible, one can then

attempt to �nd plausible, e.g. nonparametric, assumptions that exclude them and thus lead to sharper
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inference.1

Whilst the empirical part of this paper will consider the application just outlined, it is important to

realize that interval identi�cation of distributions or conditional expectations is a much more general

problem. The scenario considered here will also occur

� whenever one can directly bound the joint distribution function Fyx,

� whenever one has interval data on Y , e.g. due to bounded measurement error, to interval-valued

elicitation of Y (as with income brackets), or any other application cited by [4],

� if one only observes bounds on the probability measure of (Y jX), in which case bounds on Fyjx
are immediate and bounds on E(Y jX) follow from results in [2], or

� in Robust Bayesian analysis, where sets of priors may induce bounds on either Fyjx or E(Y jX)

[14],

and the above remarks extend to all of these applications.

Finally, the present result applies to regression analysis, where the issue of substantive interest is

the causal connection �here captured by � �between X and Y . If the model speci�es Y = G(X�)+ ",

where the error term " obeys E("jX) = 0, then � can be estimated consistently by its sample analog, i.e.

by replacing population expectations with sample means. This will not work if E("jX) 6= 0. However,

assume that one has available a vector of instruments Z 2 RK ;K � J , s.t. Z is correlated with X but

not with ". (Recall that J is the dimensionality of X.) Then � can be estimated consistently by the

instrumental variables estimator

b�IV = (EnX 0ZWZ 0X)
�1
EnX

0ZWZ 0G�1(Y );

where En denotes sample means and W is a pre-assigned matrix that weights the instruments; W is

relevant only if K > J .2 To keep the presentation simple, I will not work with this more elaborate

term, but the below result can be easily adapted to �nd bounds on b�IV that arise from incomplete

samples.

The remainder of this paper is structured as follows. The identi�cation problem is formally stated

and solved in section 2, the empirical example from Horowitz et al. [9] is revisited in section 3, and I

conclude in section 4.
1A nonparametric assumption is one that avoids imposition of functional forms. In the example, one could impose

that F �
yjx(y; x) is ordered relative to Fyjx(y; x) in some way, say with respect to �rst-order stochastic dominance.

2This estimator is known as �Generalized Method of Moments� (GMM) estimator; see Hansen [6] for the canonical

reference and Hayashi [7] for a textbook treatment. The case of pre-assigned W holds in all one-step GMM methods,

including two-step least squares, seemingly unrelated regressions, multivariate regression, �xed e¤ect, and random e¤ect

estimators. W is not pre-assigned, and the result does not apply, in e¢ cient (�two-step�) GMM.
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2 Analysis of the Identi�cation Problem

I will begin with the identi�cation analysis and postpone the consideration of �nite sample problems

until section 3. Hence, let Fx, F yjx, and F yjx be known. Then �nding bounds on � amounts to solving

a constrained optimization problem, namely to �nd Fyjx so as to extremize � in a certain direction.

This problem is amenable to closed-form analysis since � increases in E(G�1(y)jX = x) for some values

of x and decreases in it otherwise. Hence, � is maximized by maximizing E(G�1(y)jX = x) for certain

x and minimizing it for others. Such maximization [minimization] is possible since it corresponds to

minimization [maximization] of Fyjx. The remaining question is when to maximize Fyjx and when to

minimize it.

Proposition 1 formalizes this intuition, and answers the last question, for extremization of any inner

product c � �. Thus, the proposition immediately yields bounds on the actual predictor bY given any x.
Bounds on the components of � can be recovered by identifying c with the corresponding base vectors.

Proposition 1 Let Fx and the bounding functions
�
F yjx; F yjx

�
be known. Then for any pre-assigned

c 2 RJ , c � � is bounded by

c �
�Z

x0xdFx

��1 Z
x0g(x)dFx � c � � � c �

�Z
x0xdFx

��1 Z
x0g(x)dFx; (4)

where g(x) and g(x) are de�ned by

g(x) �

8<:
R
G�1 (y) dF yjx; c �

�R
x0xdFx

��1
x0 > 0R

G�1 (y) dF yjx; c �
�R
x0xdFx

��1
x0 � 0

(5)

g(x) �

8<:
R
G�1 (y) dF yjx; c �

�R
x0xdFx

��1
x0 > 0R

G�1 (y) dF yjx; c �
�R
x0xdFx

��1
x0 � 0

: (6)

These bounds are tight if for any d 2 RJ , it is conceivable that d � x � 0 ) Fyjx = F yjx and

d � x < 0 ) Fyjx = F yjx. If G is linear, they can be computed from
�
E(x);E(x)

�
by identifying g(x)

and g(x) with

g(x) �

8<: G�1 (E(x)) ; c � (EX 0X)�1x0 > 0

G�1
�
E(x)

�
; c � (EX 0X)�1x0 � 0

(7)

g(x) �

8<: G�1
�
E(x)

�
; c � (EX 0X)�1x0 > 0

G�1 (E(x)) ; c � (EX 0X)�1x0 � 0
: (8)

Proof. De�ne

� �
n eFyx : eFx = Fx; F yjx � eFyjx � F yjxo ;

the set of distributions of (Y;X) that are consistent with Fx as well as
�
F yjx; F yjx

�
. Then

c � � � supeFyx2�
(
c �
�Z

x0xdFx

��1 Z
x0G�1(y)d eFyx) : (9)
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De�ne � � c �
�R
x0xdFx

��1
. Knowledge of Fx implies knowledge of

R
x0xdFx and hence �, so (c � �)

can be bounded from above as follows:

c � � � supeFyx2�
�
�

Z
x0G�1(y)d eFyx� (10)

= supeFyx2�
�
�

Z Z
x0G�1(y)d eFyjxd eFx� (11)

= supeFyx2�
�
�

Z
x0
Z
G�1(y)d eFyjxdFx� (12)

�
Z

supeFyx2�
�
�x0

Z
G�1(y)d eFyjx� dFx (13)

=

Z
�x0g(x)dFx; (14)

where (11) holds because of the Laws of Total Probability and Iterated Expectations, (12) uses the facts

that eFx = Fx and that the integral operator is linear, and (13) holds due to the objective function�s
separability. To see the last step, consider the problem

max
Fyjx�Fyjx�Fyjx

�
�x0

Z
G�1(y)dFyjx

�
: (15)

For any pre-assigned x, the objective is linear in the expectation
R
G�1(y)dFyjx and the problem is

therefore solved by maximizing [minimizing] this term if �x0 is positive [negative]. Since G�1 is strictly

increasing and expectations of strictly increasing functions of random variables increase with �rst-order

stochastic dominance, this is achieved by pointwise minimization [maximization] of Fyjx. Hence, g(x)

as in (6) solves (15) for every x, and (14) bounds (13) from above.

This establishes the upper bound�s validity. Notice that � contains the distribution characterized

by

Fyjx(y; x) =

8<: F yjx; c �
�R
x0xdFx

��1
x0 > 0

F yjx; c �
�R
x0xdFx

��1
x0 � 0

:

This distribution solves (15) for every x, hence (14) is an equality. Equality of (13), however, obtains

only if this distribution is also consistent with any knowledge about Fyx that is not re�ected in the

de�nition of �. The additional condition is su¢ cient for this. (A stronger su¢ cient condition is, of

course, that � exhausts the available information about Fyx.) The arguments extend to lower bounds

by replacing c with (�c).

Finally, let G and hence G�1 be linear. Then (15) is solved by any conditional distribution Fyjx

that maximizes [minimizes] E(Y jX = x) if �x0 is positive [negative], thus the bounds can be computed

from g(x) as in (8).

It turns out that identi�cation of bounds on c�� with incomplete outcome data is a computationally

trivial exercise. It is also clear why more general patterns of partial identi�cation exponentiate the
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problem�s complexity: The simplicity of the result crucially depends on identi�cation of the �denomi-

nator�
�R
x0xdFx

��1
, which renders the problem linear.

The proof not only establishes the bounds�validity, but also identi�es distributions of (Y jX) that

achieve them. Firstly, this implies that if the bounding functions
�
F yjx; F yjx

�
exploit the available

information about Fyjx, then the bounds are tight. Secondly, with the worst-case con�guration of Fyjx

being known, one can attempt to �nd plausible assumptions that exclude it and hence tighten the

bounds. Re�nements of bounds in this spirit are discussed extensively in [11].

3 An Empirical Illustration

To illustrate the result, I re-analyze the dataset from [12] that was also used in [9]. The data concern

worker expectations of job loss and were collected between 1994 and 1998 in the Survey of Economic

Expectations.3 Survey respondents answered the following question:

I would like you to think about your employment prospects over the next 12 months. What do you

think is the percent chance that you will lose your job during the next 12 months?

These answers are taken as outcome of interest Y . Responses could be any number in [0; 100];

with extremely few exceptions near the extremal values, integers were chosen. The survey also elicited

covariates, of which age, race, and income (the �rst two coded as multivalued indicator variables) will be

considered here. A question of obvious interest is the relation between these covariates and expectations

about job loss. If the latter varied systematically by race, say, this fact would be intrinsically interesting

as well as help to predict expectations.

To analyze this question, Horowitz et al. [9] used Best Linear Prediction or OLS regression, i.e.

this paper�s framework with � = (EX 0X)
�1
EX 0Y as in (1). A component of � can be interpreted as

the statistical e¤ect of the respective covariate �membership in a given age group, say �on expected

job loss within a linear probability model. Following [9], I will separately consider the regression on

all three covariates and on age and race only.

Unfortunately, the data set has missing data on Y as well as on all covariates, so that � is only

partially identi�ed. Horowitz et al. [9] investigate bounds that take into account the full missingness

pattern. In contrast, I will ignore missing components of X by discarding observations with incomplete

X. The resulting data set lends itself to an application of proposition 1. This data reduction is to some

degree illustrative and meant to generate results that compare to [9]. But one might also substantively

entertain the underlying assumption, namely that observations of X are missing at random, in which

case it su¢ ces to focus on selective missingness in Y .

3The data are publicly available at http://www.faculty.econ.northwestern.edu/faculty/manski/. The MATLAB code

used for the present application is available from the author.
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Tables 1 and 2 display bounds on the components of �, i.e. the di¤erent covariates�coe¢ cients.

The tables are comparable to tables 2 and 3 in [9], but computation of the bounds is so much faster �

a few seconds as opposed to several hours �that two important changes were possible. Firstly, whilst

[9] discretize outcomes as well as income to keep computations tractable, this is not needed here, and

the original income variable was used. More importantly, [9] were only able to bound the sample

analog of �, i.e. the object �n � (EnX 0X)
�1
EnX

0Y . Whilst �n is the usual estimator for �, no clear

indication of the impact of sampling variation, and thus the likely divergence of �n from �, was given.

In contrast, tables 1 and 2 here present bounds on components of �n (in the columns labelled �L.B.�

for lower bound respectively �U.B.�for upper bound) but also con�dence intervals that were computed

by means of an N = 10000 bootstrap.4 The intervals spanned by the lower and upper 95% con�dence

points exhibit a nominal 95% coverage probability with respect to the corresponding component of �.5

As in [9], the bounds are computed under two di¤erent conditions, once by assuming that Y = 50%

�a very frequent answer �is valid, and once by treating it as missing. The reason for this is that as

explained in [9], it has been argued that a response of Y = 50% expresses of complete ignorance and

should not be taken at face value.

Y=50% treated as non-missing Y=50% treated as missing

95% L.B. U.B. 95% 95% L.B. U.B. 95%

constant 7.71 11.22 23.16 28.43 2.74 5.76 28.62 34.65

age 18-24 -14.30 -8.66 9.24 13.53 -24.51 -18.18 18.76 22.83

age 25-49 -14.70 -9.33 5.98 9.51 -24.00 -17.99 14.64 17.78

age 50-64 -17.54 -12.08 4.96 8.96 -25.91 -19.77 12.65 16.30

black 1.98 4.87 15.14 18.52 -8.79 -6.02 26.03 30.38

other nonwhite -4.96 -2.37 7.84 11.19 -11.72 -9.21 14.68 18.58
Table 1: Bounds on components of � for the regression without income.

4The bootstrap method is to estimate a statistic�s sampling distribution by a Monte Carlo experiment in which the

statistic is computed from many (here, 10000) arti�cal samples which have been generated by drawing with replacement

from the original sample. Thus, the sample distribution of the data is used as an estimator of their population distribution.

See Efron [3] for the pioneering contribution and Horowitz [8] for a recent overview.
5The intervals have been de�ned as suggested by [10], thus their coverage probability applies to the population

parameter as opposed to the �true� (population) bounds on it. Con�dence regions for the population bounds would be

larger.

Horowitz et al. [9] point out that in general, the bootstrap can be inconsistent for the present type of problem because

parameters are estimated subject to inequality constraints. But given proposition 1, the present estimation problem can

be rewritten in terms of equality constraints, and the problem is therefore avoided. See also Andrews [1].

8



Y=50 treated as non-missing Y=50 treated as missing

95% L.B. U.B. 95% 95% L.B. U.B. 95%

constant 8.92 13.02 22.84 30.11 2.82 6.59 29.26 38.21

income -0.1151 -0.0171 -0.0087 -0.0048 -0.1654 -0.0236 -0.0022 0.0128

age 18-24 -14.43 -7.49 7.30 12.17 -26.01 -17.71 17.52 22.27

age 25-49 -14.40 -8.07 4.55 9.04 -24.80 -17.32 13.80 17.77

age 50-64 -16.85 -10.46 3.45 8.75 -26.38 -18.60 11.59 16.81

black 2.15 5.35 13.98 17.47 -9.16 -6.04 25.37 29.94

other nonwhite -5.02 -2.13 7.69 11.46 -11.61 -8.78 14.34 18.62
Table 2: Bounds on components of � for the regression with income.

As with previous analyses of this dataset, worst-case bounds on most coe¢ cients are quite large

and include zero, so that the coe¢ cients�signs are not identi�ed. The only unambiguous e¤ects are

that African-Americans have a higher perceived job insecurity, and higher income is predictive of a low

perceived insecurity. Even these conclusions only obtain when Y = 50% is considered a valid response,

and a caveat to the �rst one will be stated below. The �estimation penalty��that is, the width of

con�dence intervals above and beyond the sample bounds �is surprisingly large for such a big data

set. This fact presumably attests to the objective function�s nonlinearity and local volatility, the same

features that make the unrestricted identi�cation problem so hard. All in all, the substantive result is

negative: With few exceptions, the bounds do not su¢ ce to establish that covariates explain or predict

job loss expectations.

Comparison of the bounds to tables 2 and 3 in [9] allows some interesting observations. One might

expect some agreement between table 1 here and table 2 in [9] because only 43 (of 3860) data points

were deleted, so that these tables are generated from very similar data. The alignment, whilst not

perfect, is indeed quite good. This suggests that the discretization of outcomes in [9] as well as the

inevitable optimization error encountered there had a limited e¤ect on their results. Regarding table

2 here and table 3 in [9], larger discrepancies are both expected and discovered.

The results also suggest that one observation in [9] must be quali�ed when sampling uncertainty

is taken into account. Their table 3 shows a lower bound on the coe¢ cient for black of 0:58, thus this

coe¢ cient�s sample analog is known to be positive. But the estimation penalty on black in table 2

equals 5:35� 2:15 = 3:20, which much exceeds 0:58. Although this number cannot be applied directly

to table 3 in [9], it leaves no reasonable doubt that the 95% con�dence region for their coe¢ cient on

black would include zero. (Conversely, the coe¢ cient�s statistically signi�cant positive sign in table 2

above must be an artifact of dropping the observations with missing covariates.)
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4 Conclusion

This paper added to the growing literature on partial identi�cation by discussing worst-case bounds

on Generalized Linear Predictors or instrumental variable estimators, e.g. OLS regressions, when the

outcome variable Y is only partially identi�ed. The intuition behind the bounds is to specify the

distribution of Y as high as possible for certain realizations of the regressor and as low as possible

otherwise.

I illustrated the bounds with a real-world dataset. Their computation is so fast that some limitations

of previous analyses could be overcome; most importantly, I was able to investigate the e¤ect of

sampling uncertainty on the bounds. Since regression with observable (or randomly missing) covariates

but selectively missing outcomes is a reasonably generic setup, I believe that the results can be useful

in a large number of applied settings. They also signi�cantly improve solution algorithms for more

general formulations of the problem because these algorithms can use the present result to optimize over

Fyjx. Finally, the analysis opens avenues for further research by identifying the worst-case scenarios

that generate the bounds, allowing one to assess their plausibility and perhaps formulate credible

assumptions that lead to tighter identi�cation.
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