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Abstract

This paper applies recently developed methods to robust assessment of treatment
outcomes and robust treatment choice based on nonexperimental data. The sub-
stantive question is whether young offenders should be assigned to residential or
nonresidential treatment in order to prevent subsequent recidivism. A large data
set on past offenders exists, but treatment assignment was by judges and not by ex-
perimenters, hence counterfactual outcomes are not identified unless one imposes
strong assumptions.

The analysis is carried out in two steps. First, I show how to compute identified
bounds on expected outcomes under various assumptions that are too weak to re-
store conventional identification but may be accordingly credible. The bounds are
estimated, and confidence regions that take current theoretical developments into
account are computed. I then ask which treatment to assign to future offenders if
the identity of the best treatment will not be learned from the data. This is a deci-
sion problem under ambiguity. I characterize and compute decision rules that are
asymptotically efficient under the minimax regret criterion. The substantive con-
clusion is that both bounds and recommended decisions vary significantly across
the assumptions. The data alone do not permit conclusions or decisions that are
globally robust in the sense of holding uniformly over reasonable assumptions.

Keywords. Partial identification, bounds, statistical decision rules, treatment choice,
treatment evaluation, minimax regret.
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1 Introduction

This paper shows how recent results on identification, estimation, and treatment
choice in situations of partial identification can be brought to bear on a practical
example, using real-world data to analyze a question of real-world interest. The
question is: What kind of treatment should be used on young offenders to prevent
recidivism? The choice will be between confinement in residential treatment facili-
ties and diversion to nonresidential treatment. The data are a large sample of young
offenders from Utah who received one of the treatments and whose subsequent be-
havior was observed. If the offenders had been assigned to treatments at random,
then one could trivially determine which treatment was more successful. The fun-
damental problem motivating the analysis is that in fact, treatment was assigned by
judges whose intention was hardly to create a statistical experiment. Hence, there
is a missing data problem: Counterfactual outcomes for the treatment group are
unobserved and cannot be proxied for by observed outcomes for the control group,
and vice versa.

Such problems are well known in the statistical and econometric literature on
treatment evaluation.1 The standard solution is to propose a model of the missing
data. If the model is specified sufficiently tightly, then identification is restored and
counterfactual outcomes can (asymptotically) be backed out. This approach has
much merit but also an important limitation: The credibility of conclusions drawn
from such analysis is bounded above by the credibility of the assumptions about
missing data. The purpose of this paper is to demonstrate how recently developed
methods can be used to generate interesting insights with no, or less, such assump-
tions. Of course, getting answers that do not rely on identifying assumptions comes
at a price. When it comes to assessing the outcome distributions induced by differ-
ent treatments, the price is that only bounds on these quantities can be estimated.
When it comes to recommending treatment for future populations, the price is that
many different assignment rules are admissible. To select one of them, one must
commit to a potentially controversial principle of decision making under ambigu-
ity. This principle could be Bayesianism or maximin utility, but I will emphasize
minimax regret in the form recently proposed by [10].

While I provide some new theoretical results, these are not the paper’s core
contribution. The main point is rather to show how different very recent theoretical
results, few of which have seen much application so far, can be combined in the
analysis of a practical problem. Specifically, I rely on identification analysis by
[14] as well as new results; I estimate partially identified parameters using meth-

1See [6] and [18] for overviews and [4] for a recent, encyclopedic treatment and further refer-
ences.
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nonresidential residential totals
no recidivism 4774 333 5107
recidivism 6977 1113 8090
totals 11751 1446 13197

Table 1: Contingency table of the data.

ods developed in [7] and [25]; I apply recent [11][21] analyses of treatment choice
when identified population parameters are known; and I use [5] to generate as-
ymptotically minimax regret efficient treatment rules. Regarding the substantive
question, it turns out that treatment recommendations vary much with what one is
willing to assume, as well as with decision theoretic commitments one is willing
to make. The data alone are not able to inform decisions.

The most important precursor for this paper is [14], who use the same data;
indeed, section 3 of this paper essentially updates their analysis in the light of sub-
sequent developments. There is no decision theoretic component to [14] however.
To my knowledge, the only other empirical applications of minimax regret are [13]
and some passages in [12] for situations with partial identification and [2] for situ-
ations with conventional identification.

2 The Identification Problem

Substantively, this paper is about the impact of the juvenile justice system on delin-
quency and what to do about it, a question that has engendered lively academic and
nonacademic debate; see [14] for an overview of the sociological literature. Specif-
ically, should young offenders be assigned to residential facilities (i.e. prison-like,
although typically not prisons in the usual sense) or to nonresidential treatment?
The question will be analyzed by considering the outcomes actually experienced
by young offenders who were assigned one of the two treatments in Utah. Thus, I
exclude from analysis the fact that different treatments might have different incen-
tive effects on potential future offenders.

I re-analyze the data used in [14]. They are lifted from the National Juvenile
Court Data Archive and collect observations on male offenders born between 1970
and 1974 who came into contact with the criminal justice system before age 16
and who were eventually found guilty on a charge that would have been a criminal
offense under adult law. The data reveal whether the offenders received residential
or nonresidential treatment and whether they generated a new referral within the
24 months following the date of treatment. Generating such a referral is counted
as recidivism. Table 1 summarizes key aspects of the data.
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I will maintain the assumption that the sample is a random sample from the
population of young offenders. If treatment had furthermore been assigned ran-
domly as in an experiment, conclusions would be obvious: The probability of re-
cidivism equals 59% in the nonresidential treatment group and 77% in the residen-
tial treatment group. Sampling errors are small compared to the difference between
these numbers. Nonresidential treatment is preferable.

Of course, things are not so easy. The choice between residential and nonresi-
dential treatment was made by judges, and it is unlikely that they intended to create
an experiment. Therefore, outcomes experienced by the residential treatment group
may not be a good proxy for outcomes that would have been experienced by the
other group (and vice versa).

To analyze this formally, I use a potential outcomes framework [18]. Let the
random variable T ∈ {r, n} denote treatment, with a realization of t = r corre-
sponding to residential treatment.2 The random variable Yt denotes the potential
outcome that would be experienced by a randomly selected young offender if as-
signed to treatment t. A realization of Yt = c (for “crime”) denotes recidivism;
to avoid confusion with n for “nonresidential,” the other outcome will be denoted
as (Yt 6= c). Importantly, there are two potential outcomes (Yr, Yn) for every
young offender, but one can only observe the treatment that he actually received
and the outcome he actually experienced, i.e. realizations (t, yt). Consequently,
Pr(T = r), Pr(Yr = c|T = r), and Pr(Yn = c|T = n) are identified – they will
be learned with arbitrary precision as samples grow large and are revealed with
rather high precision by the existing sample. In contrast, the counterfactual prob-
abilities Pr(Yn = c|T = r), and Pr(Yr = c|T = n) are unobservable, and no
direct learning about them occurs in samples of arbitrary size. The obvious con-
sequence is that the unconditional probabilities Pr (Yn = c) and Pr (Yr = c) are
not identified either. Note that this is essentially a missing data problem, namely,
observations on counterfactual outcomes are missing.

The problem is conventionally resolved by proposing a model of the missing
data that restores identification. The most straightforward such model is to posit
that the missing data are ignorable, i.e. that Pr(Yt = c|T = r) = Pr(Yt =
c|T = n), t = r, n. This assumption is justified if the data were generated by an
experiment, i.e. if T was chosen at random. In that case, T would be independent
of (Yr, Yn), hence ignorability would obtain. This is why randomized experiments
make statistical analysis relatively easy.

With nonexperimental data, ignorability is typically not a plausible assumption.
One may be willing to impose a different model of the missing data that is tight
enough to ensure identification. In economics, a typical method would be to write

2I will generally use capital letters for random variables and small letters for realizations.
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an explicit model that specifies the behavior of both judges and offenders up to
some parameters which are then estimated. While this approach has a distinguished
tradition in both statistics and economics, the credibility of conclusions obtained
through it is bounded by the credibility of the identifying assumptions. The purpose
of this paper is to showcase a recently developed set of tools that allows one to
generate a lot of insight with no model of the missing data, or with a model that
is very weak and therefore highly credible, but fails to restore identification. The
core idea is that even such weak models generate partial identification: The data
do not (asymptotically) reveal the exact parameter of interest, but they do reveal
nontrivial information about it. The question is how to rigorously formalize this
idea and how to base estimation on it. This will be done in section 3 of this paper,
which will derive and estimate numerous bounds on the parameters of interest. I
will also find out how much deviation from random assignment (in the sense of
distortion of odds ratios) is needed to overturn the conclusions one would draw
from ignoring the missing data problem. This part of the analysis can alternatively
be interpreted as an exercise in global sensitivity analysis, or in bounding posterior
expectations in a specific instance of a robust (multiple prior) Bayesian setup.

The insights generated by partially identified models are frequently insufficient
to identify one treatment as unambiguously optimal; indeed, this case will occur
here. Therefore, partial identification also raises new questions about treatment
choice. In section 4 of the paper, I combine the minimax regret decision criterion
with the partially identifying assumptions to arrive at specific treatment recom-
mendations. As was previously found with minimax regret [11][20][21][22][24],
these recommendation will often be to randomize treatment. Also, the assump-
tions one is willing to make strongly affect treatment recommendations. Section 5
concludes, and an appendix collects proofs of selected results.

3 Bounds on Parameters:
Identification, Estimation, and Inference

In this section, I show what can be learned aboutPr(Yr = c) andPr(Yn = c) using
no or weak assumptions about missing data. Thus, the analysis is one of partial
identification as recently summarized by [9]. I first introduce partial identification
by demonstrating assumption-free (with respect to the missing data) bounds. Then
I motivate a number of partially identifying assumptions, derive what they would
imply if identified quantities were known, and compute according estimates and
confidence regions.

The basic idea behind partial identification is that even when quantities are not
identified in the usual sense, the data generating process may reveal some infor-
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mation about them. This is easy to see in the present example: Basic probability
calculus implies that

Pr (Yr = c) = Pr(Yr = c|T = n) Pr(T = n) + Pr(Yr = c|T = r) Pr(T = r)

Pr (Yn = c) = Pr(Yn = c|T = n) Pr(T = n) + Pr(Yn = c|T = r) Pr(T = r),

hence

Pr(Yr = c|T = r) Pr(T = r) ≤ Pr (Yr = c)

≤ Pr(T = n) + Pr(Yr = c|T = r) Pr(T = r)

Pr(Yn = c|T = n) Pr(T = n) ≤ Pr (Yn = c)

≤ Pr(Yn = c|T = n) Pr(T = n) + Pr(T = r)

as originally derived in [8]. These bounds only depend on identified quantities,
hence one will learn them from the data as samples grow large; in finite samples,
they can be estimated.

Of course, such worst-case bounds may be rather wide. In this paper’s applica-
tion, replacing population expectations with sample means yields estimated bounds
of

0.025 ≤ Pr (Yr = c) ≤ 0.916
0.362 ≤ Pr (Yn = c) ≤ 0.471,

where the stark difference in length of bounds is due to the fact that most offenders
received nonresidential treatment, thus its effect is better identified.

It is possible to create tighter bounds by committing to some assumption about
how missing data were generated without going back all the way to identification.
For example, [14] translate popular conjectures about decision making by judges
into the following two assumptions.

Definition: Outcome Optimization
A judge is said to optimize outcomes if

Pr(Yr = c|T = r) ≤ Pr(Yn = c|T = r)

Pr(Yn = c|T = n) ≤ Pr(Yr = c|T = n).

Definition: Skimming
A judge is said to practice skimming if

Pr(Yr = c|T = r) ≥ Pr(Yr = c|T = n)

Pr(Yn = c|T = r) ≥ Pr(Yn = c|T = n).
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Both assumptions presume that judges are able to assess individual offenders’
types, and hence their potential outcomes, pretty well.3 They differ with respect to
what judges are supposed to make of this information. The story behind outcome
optimization is that they minimize recidivism. Thus, an offender is assigned to res-
idential treatment iff this treatment minimizes his probability of recidivism. The
story behind skimming is that judges are able to rank cases according to “tough-
ness,” that tougher cases have the worse prognosis conditional on either treatment,
and that judges assign the tougher cases to residential treatment, for example to
deter future tough cases or to protect society from the present ones.

I will also analyze an assumption that is due to [17, chapter 4]:

Definition: Bounded Selection
Bounded selection with parameter κ ∈ [1,∞) obtains if

1

κ

Pr(Yr = c|T = r)

Pr(Yr 6= c|T = r)
≤ Pr(Yr = c|T = n)

Pr(Yr 6= c|T = n)
≤ κ

Pr(Yr = c|T = r)

Pr(Yr 6= c|T = r)

1

κ

Pr(Yn = c|T = n)

Pr(Yn 6= c|T = n)
≤ Pr(Yn = c|T = r)

Pr(Yn 6= c|T = r)
≤ κ

Pr(Yn = c|T = n)

Pr(Yn 6= c|T = n)
.

Bounded selection constrains the divergence between observable and counter-
factual odds ratios. Its stringency can be scaled by choosing κ: With κ = 1, it
reduces to ignorable missing data, and it becomes entirely vacuous as κ → ∞.
[17] emphasizes its use as a local robustness (or sensitivity) tool that can reveal
whether conclusions are knife-edge dependent on ignorability. This interpretation
is less important here because ignorability is implausible to begin with. However,
bounded selection with large or moderate κ is a potentially plausible assumption
that contrasts with outcome optimization and skimming. The latter allow for very
sharp differences between the two treatment groups, and at the same time presume
that judges fully anticipated these differences. If either presumption appears du-
bious – i.e. differences between offenders are limited, or judges can differentiate
between offenders only to a limited degree –, then bounded selection makes intu-
itive sense.4 While the assumption is not testable from this paper’s data, one could
calibrate plausible values for κ from auxiliary information, e.g. case studies of
judges’ behavior or data that record recidivism conditional on additional informa-
tion that judges are likely to observe.

3Technically, one might want to assume that they know the individual realizations of potential
outcomes, but it suffices that they observe characteristics of offenders that are not contained in the
data but that allow for differentiated predictions.

4Bounded selection could be combined with either of the preceding assumptions to simultane-
ously constrain the direction and extent of selection effects, but this will not be pursued here.
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The assumptions have in common that they fail to restore identification of pre-
viously unidentified quantities, but they imply restrictions on counterfactual out-
comes and therefore induce a tightening of the worst-case bounds. At the same
time, they can be argued to be more credible than fully identifying models because
they merely impose some nonparametric restriction that often has clear substan-
tive meaning (e.g., judges act in offenders’ best interest), without the baggage of
additional convenience assumptions. Their precise effect on bounds is as follows.

Proposition 1:
Bounds under Different Assumptions
Assume that outcome optimization holds, then

Pr(Yr = c|T = r) Pr(T = r) + Pr(Yn = c|T = n) Pr(T = n)

≤ Pr(Yr = c) ≤ Pr(Yr = c|T = r) Pr(T = r) + Pr(T = n)

Pr(Yr = c|T = r) Pr(T = r) + Pr(Yn = c|T = n) Pr(T = n)

≤ Pr(Yn = c) ≤ Pr(T = r) + Pr(Yn = c|T = n) Pr(T = n)

Assume that skimming holds, then

Pr(Yr = c|T = r) Pr(T = r) ≤ Pr(Yr = c) ≤ Pr(Yr = c|T = r)

Pr(Yn = c|T = n) ≤ Pr(Yn = c) ≤ Pr(T = r)+Pr(Yn = c|T = n) Pr(T = n).

Assume that bounded selection holds, then

Pr(Yr = c|T = r) Pr(T = r) +
Pr(Yr = c|T = r)

κ− (κ− 1)Pr(Yr = c|T = r)
Pr(T = n)

≤ Pr(Yr = c) ≤

Pr(Yr = c|T = r) Pr(T = r) +
κPr(Yr = c|T = r)

1 + (κ− 1)Pr(Yr = c|T = r)
Pr(T = n)

Pr(Yn = c|T = n)

κ− (κ− 1)Pr(Yn = c|T = n)
Pr(T = r) + Pr(Yn = c|T = n) Pr(T = n)

≤ Pr(Yn = c) ≤
κPr(Yn = c|T = n)

1 + (κ− 1)Pr(Yn = c|T = n)
Pr(T = r) + Pr(Yn = c|T = n) Pr(T = n).

All of these bounds are tight, that is, they cannot be improved upon without further
assumptions.
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Assumption LB on Pr (Yn= c) UB on Pr (Yn= c)
95% CI estimator estimator 95% CI

worst-case 0.522 0.529 0.638 0.645
outcome optimization 0.606 0.613 0.638 0.645
skimming 0.586 0.594 0.638 0.645
bounded sel., κ = 100 0.523 0.533 0.638 0.645
bounded sel., κ = 10 0.535 0.543 0.631 0.638
bounded sel., κ = 5 0.546 0.553 0.625 0.632
bounded sel., κ = 2 0.567 0.574 0.610 0.618
bounded sel., κ = 1 0.585 0.594 0.594 0.603

LB on Pr (Yr= c) UB on Pr (Yr= c)
95% CI estimator estimator 95% CI

worst-case 0.080 0.084 0.975 0.977
outcome optimization 0.606 0.613 0.975 0.977
skimming 0.080 0.084 0.770 0.788
bounded sel., κ = 100 0.107 0.111 0.972 0.975
bounded sel., κ = 10 0.288 0.307 0.949 0.954
bounded sel., κ = 5 0.417 0.441 0.924 0.931
bounded sel., κ = 2 0.618 0.641 0.859 0.871
bounded sel., κ = 1 0.748 0.770 0.770 0.791

Table 2: Bounds on expected outcomes under different assumptions.

The first two sets of bounds in this proposition are due to [14]; the last one
is new but similar to a result in [26]. Notice in particular that under outcome
optimization, both Pr(Yr = c) and Pr(Yn = c) are bounded below by Pr(Yr =
c|T = r) Pr(T = r) + Pr(Yn = c|T = n) Pr(T = n), the aggregate probability
of recidivism under the current treatment assignment scheme. This is as expected
because judges are assumed to minimize expected recidivism. Also, bounds on
the average treatment effect, the average treatment effect on the treated, and the
average treatment effect on the untreated,

ATE ≡ Pr(Yr 6= c)− Pr(Yn 6= c)

ATT ≡ Pr(Yr 6= c|T = r)− Pr(Yn 6= c|T = r)

ATU ≡ Pr(Yr 6= c|T = n)− Pr(Yn 6= c|T = n)

as well as other parameters from the treatment evaluation literature follow imme-
diately from proposition 1; they are not displayed for brevity.

To gauge the effect of partially identifying assumptions in the specific example,
I estimate all bounds by replacing population expectations with sample means.
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Table 2 presents the resulting estimates along with 95% confidence intervals for
Pr(Yn = c) respectively Pr(Yr = c). These intervals were computed as suggested
in [25]. Importantly, they are confidence regions for the true parameter and not for
bounds on it, meaning that if θ0 denotes the true probability of interest, and the
interval [θl, θu] denotes bounds on it, then the confidence intervals displayed fulfil
Pr(θ0 ∈ CI)→ 95% but not Pr([θl, θu] ⊆ CI)→ 95%. The latter would require
larger confidence regions, but seems less relevant here because the quantities of
ultimate (e.g., decision theoretic) interest are the probabilities and not the bounds.5

The conclusions one can draw about different treatments depend to a large
degree on the assumptions one is willing to make about missing data. Notice in
particular how bounds successively tighten as bounded selection is imposed with
decreasing κ. Bounded selection with κ = 2 implies the conclusion one would
also draw by assuming random assignment, namely, that nonresidential treatment
is better.6 The other assumptions fail to identify the better of the two treatments.
This raises the question which treatment to assign to future offenders. It is this
question to which I now turn.

4 Treatment Choice:
Maximin Utility and Minimax Regret

Analysis of treatment outcomes usually aims to inform treatment choice. In the
present case, a social planner may have to assign treatments to future offenders.
Formally, her problem is to pick a decision rule (δr, δn) ∈ [0, 1]2, where δt speci-
fies the probability with which to apply residential treatment conditional on T = t.7
In practice, this would mean that while judges continue to assign offenders to one
of two treatment groups, the decision on what to do with those groups is taken away
from them. Interior probabilities δt ∈ (0, 1) correspond to randomized decision

5The distinction between these types of confidence regions is due to [7]. Technically, I use the
confidence interval CI3α from [25]. By proposition 3 and lemma 3 in [25], this interval is valid if (i)
there exist estimators (θl, θu) of (θl, θu) that are

√
N-consistent, uniformly asymptotically jointly

normal, and ordered (i.e. θu ≥ θl by construction) and (ii) their asymptotic variances and cor-
relation coefficient σ2l , σ

2
u, ρ can be uniformly consistently estimated by estimators σ2l , σ

2
u, ρ .

Assuming that [θl, θu] is in the interior of [0, 1], it is easily verified that sample analogs fulfil (i)
for all bounds considered here. Standard errors were computed as closed form functions of sample
moments where feasible and bootstrapped with 100000 replications otherwise; these estimators are
again easily verified to fulfil (ii). The tuning parameter bN was chosen as in [3].

6It is easy to evaluate the “breakdown point,” that is, the smallest κ s.t. bounds on Pr(Yr = c)
amd Pr(Yn = c) fail to overlap. Ignoring estimation uncertainty, this point equals about 2.29.

7Being an example of a statistical decision rule, δ will generally depend on sample observations,
but since I condition the analysis on a particular real-world sample, I suppress this dependence in
notation. See [10][24] for more general treatments.
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rules, i.e. to assigning treatment by coin tosses (where coins have bias δ). Non-
randomized treatment choice corresponds to δ ∈ {0, 1}; in particular, the decision
rule that just implements judges’ original assignments would be (δr, δn) = (1, 0).

Randomized treatment assignment implies that different individuals that re-
ceived the same assignment by judges may end up with different treatments a poste-
riori. This can be advantageous from a maximin utility or minimax regret perspec-
tive because it hedges risks; indeed, here as in other papers [11][20][21][22][24],
minimax regret turns out to prescribe it. It might, however, raise legal or ethical
concerns that are not explicated here (see [13] for a model that formally incorpo-
rates them). Furthermore, inviting judges to propose an assignment but then devi-
ating from it might again encounter legal difficulties and might also invite strategic
behavior by judges (more on this below). I therefore also consider a “pooled as-
signment” problem in which all offenders receive residential treatment with proba-
bility δpooled, independently of their realization of T . This corresponds to a mech-
anism where judges’ assessments are not any more elicited and can, therefore, not
be contradicted. Of course, it removes the social planner’s ability to condition on
whatever information was revealed by T .

Assume that the planner’s objective is to minimize recidivism, hence ifPr(Yr =
c|T = n)were known, then she would set δr = 1 if Pr(Yr = c|T = r) > Pr(Yr =
c|T = n) and δr = 0 otherwise (and similar for δn; δpooled would compare un-
conditional probabilities). If Pr(Yr = c|T = n) were not known but identified,
there would be an added layer of difficulty because it would have to be estimated;
in typical cases, this would however be a routine problem. Without identification,
things look different because the optimal treatment assignment might be unknown
even in the limit. This would happen whenever identified bounds on probabilities
fail to overlap, or equivalently, when the sign of the relevant treatment effect is not
identified. From a decision theoretic point of view, it means that even the limit
problem is one of ambiguity, i.e. it is characterized by uncertainty which cannot
be described in probabilistic terms, and the planner will have to commit to some
decision criterion that applies to such situations. I will consider two such criteria.

Definition: Maximin Utility and Minimax Regret
Assume that all identified quantities are known and let S ∈ [0, 1]2 collect the

possible states of the world s ≡ (Pr(Yr = c|T = n),Pr(Yn = c|T = r)). Then a
maximin utility treatment rule fulfils

δMU
t ∈ arg min

δ∈[0,1]
max
s∈S

{δPr(Yr = c|T = t) + (1− δ) Pr(Yn = c|T = t)} .
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A minimax regret treatment rule fulfils

δMR
t ∈ arg min

δ∈[0,1]
max
s∈S

{δPr(Yr = c|T = t) + (1− δ) Pr(Yn = c|T = t)

−min {Pr(Yr = c|T = t),Pr(Yn = c|T = t)}}.

The optimal pooled rules δMU
pooled respectively δMR

pooled are defined analogously
but using unconditional probabilities.

The definitions are not very general because they reflect adaptation to the
present setting. For general formulations and historical, philosophical, as well as
axiomatic discussion of the criteria, I refer to the large decision theoretic litera-
ture that has evolved around them.8 A brief intuition goes as follows. Maximin
utility (respectively minimax loss) is designed to minimize the worst-case proba-
bility of recidivism. Minimax regret optimizes a worst-case scenario as well, but
“worst-case” is defined differently: The loss incurred in state s is not the proba-
bility of recidivism, but the increase in this probability relative to what could have
been achieved given s. Intuitively, minimax regret is not about how objectively
bad a situation is, but about the damage that can be caused by making the wrong
decision. Minimax regret was originally suggested by Savage [19] and recently
attracted attention in econometrics mostly due to [10]. I will focus on minimax
regret, partly because it is the lesser known criterion but recently received some
revival, and partly because it is generally harder to compute, making feasibility of
minimax regret analysis a current concern. Maximin utility rules for the present
decision problem are easy to compute and are reported along the way to provide a
comparison.

The obvious alternative to either decision rule is the Bayesian approach, namely
to put a prior on S. Technically, this is equivalent to imposing a missing data model,
and it consequently leads to well-defined posterior distributions of (Yr, Yn). Hence,
it should be thought of less as a decision theoretic solution concept than as a way to
restore identification. As such, it would be subject to the preceding section’s crit-
icism of fully identifying assumptions. To avoid this criticism, one could opt for
the robust Bayesian approach [1, chapter 4] and impose a set of priors. But when-
ever this approach fails to identify the better treatment, one is back to the decision
problem considered in this section. Indeed, the difference between (nominally fre-
quentist) minimax regret as considered here and the robust Bayesian Γ-minimax
regret is largely semantic – partially identifying assumptions can be interpreted as
characterizations of sets of priors. If the Bayesian approach is combined with a
concern for robustness, then it does not avoid this section’s decision problem.

8The abstract treatment in [23] is tailored to applications in statistical decision theory. The defin-
ition of minimax regret in [22] is more general than but still close to the present one.
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To compute the optimal rules, I first abstract from sampling uncertainty, i.e. I
pretend that identified quantities are known. Minimax regret treatment rule for this
idealized scenario can be derived from a result due to [13, proposition 4].

Lemma 1
Let bounds on (Pr(Yr = c|T = t),Pr(Yn = c|T = t)) be given by πr ≤

Pr(Yr = c|T = t) ≤ πr and πn ≤ Pr(Yn = c|T = t) ≤ πn, then minimax regret
treatment choice is

δMR
t =

⎧⎨⎩
0, dMR

t < 0
dMR
t , 0 ≤ dMR

t ≤ 1
1, 1 < dMR

t

dMR
t =

πn − πr
πn + πr − πn − πr

.

The pooled decision rule δMR
pooled is obtained analogously but using bounds on un-

conditional probabilities.9

Minimax regret decision rules can be computed by substituting for (πr, πr, πn,
πn) in this lemma. The results are as follows.

Proposition 2:
Minimax Regret Treatment Choice under Different Assumptions
Assume that worst-case bounds apply, then

δMR
pooled = Pr(Yn = c|T = n) Pr(T = n) + Pr(Yr 6= c|T = r) Pr(T = r)

δMR
r = 1− Pr(Yr = c|T = r)

δMR
n = Pr(Yn = c|T = n).

Assume outcome optimization, then

δMR
pooled =

Pr(Yr 6= c|T = r) Pr(T = r)

Pr(Yr 6= c|T = r) Pr(T = r) + Pr(Yn 6= c|T = n) Pr(T = n)

δMR
r = 1

δMR
n = 0.

9Readers familiar with the treatment effect literature might find it interesting to note that if ATT
and ATT denote bounds on ATT , then dMR

r = ATT/(ATT −ATT ) and similarly for dMR
n and

dMR
pooled (using ATU respectively ATE).
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Assume skimming, then

δMR
pooled =

min

½
Pr(Yn = c|T = n) Pr(T = n) + Pr(Yr 6= c|T = r) Pr(T = r)

Pr(Yr = c|T = r) Pr(T = n) + Pr(Yn 6= c|T = n) Pr(T = r)
, 1

¾
δMR
r = min

½
1− Pr(Yr = c|T = r)

1− Pr(Yn = c|T = n)
, 1

¾
δMR
n = min

½
Pr(Yn = c|T = n)

Pr(Yr = c|T = r)
, 1

¾
.

Define p ≡ Pr(T = r) and πt ≡ Pr(Yt = c|T = t) and assume bounded selection,
then minimax regret is achieved by the projection onto [0, 1] (as in lemma 1) of

dMR
pooled =

πn

³
pκ

1+(κ−1)πn + 1− p
´
− πr

³
p+ 1−p

κ−(κ−1)πr

´
p (κ2−1)(πn−π2n)
κ+(κ−1)2(πn−π2n)

+ (1− p) (κ2−1)(πr−π2r)
κ+(κ−1)2(πr−π2r)

dMR
r =

κ2
¡
πn − π2n

¢
+ κπ2n − πr

¡
κ+ (κ− 1)2(πn − π2n)

¢
(κ2 − 1)(πn − π2n)

dMR
n =

πn
¡
κ+ (κ− 1)2(πr − π2r)

¢
− πr − (k − 1)π2r

(κ2 − 1)(πr − π2r)
.

Some parts of proposition 2 have clear intuitions. Under outcome optimization,
the conditional minimax regret treatment rule prescribes to implement the judges’
decisions. This is to be expected because the assumption says that judges optimized
outcomes to begin with. If skimming is assumed, the decision rule may assign all
offenders to treatment r, but never assigns all offenders to treatment n. The reason
is that if T = r indicates the “tougher” population, then Pr(Yr = c|T = r) ≤
Pr(Yn = c|T = n) unambiguously implies that r is the better treatment.10 In
contrast, no value of (Pr(Yr = c|T = r),Pr(Yn = c|T = n)) will unambiguously
establish that n is better.

Proposition 2 identifies minimax regret treatment rules in the limit problem
where identified quantities, and hence the bounds from proposition 1, are known.
In practice, the rules must be estimated. I compute “plug-in estimators” bδMR

pooled,bδMR

r , and bδMR

n by substituting sample means for population expectations. A justi-
fication for this approach is found in [5]: Under conditions fulfilled here, solving

10Proof: Pr(Yr = c|T = n) ≤ Pr(Yr = c|T = r) ≤ Pr(Yn = c|T = n) ≤ Pr(Yn = c|T =
r), where the outer inequalities follow from skimming.
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Assumption bδMR

pooled
bδMR

r
bδMR

n

worst-case 0.55 0.23 0.59
outcome optimization 0.07 1 0
skimming 0.76 0.57 0.77
bounded sel., κ = 100 0.54 0.23 0.58
bounded sel., κ = 10 0.44 0.21 0.48
bounded sel., κ = 5 0.33 0.17 0.36
bounded sel., κ = 2 0 0 0
bounded sel., κ = 1 0 0 0

Table 3: Minimax regret treatment rules under different assumptions.

limit problems but with asymptotically efficient estimators substituted for popu-
lation quantities leads to treatment rules that are asymptotically efficient as well.
Sample means are maximum likelihood estimators of population expectations and,
therefore, asymptotically efficient. Hence, plugging them into proposition 2 is an
asymptotically minimax regret efficient procedure.

Results are displayed in table 3. They show that treatment choice much de-
pends on assumptions made. An interesting transition can be seen with bounded
selection, where κ = 100 essentially replicates the worst-case analysis, but non-
residential treatment becomes the more attractive, the less severe the distortion
through selective treatment assignment is assumed to be.11

Two interesting features of the results are that (i) residential treatment is recom-
mended with perhaps higher than expected frequency, and (ii) except for outcome
optimization, bδMR

n > bδMR

r and frequently even bδMR

n > 0.5 > bδMR

r , thus minimax
regret tends to (stochastically) overturn the judges’ decisions. The reason for both
phenomena is that minimax regret values upside risks roughly symmetrically to
downside risks. Since residential treatment is much less prevalent in the sample,
its effect is less identified. Because empirical outcomes of either treatment are dis-
appointing, this underidentification induces more upside risk than downside risk,
leading to (i). The effect becomes more pronounced when one separates bδMR

r andbδMR

n . In both cases, the expected outcome under the respective status quo treat-
ment is identified, the other one is not. Since status quo outcomes are not very
favorable, minimax regret tends to advise against the status quo treatment in both
cases, leading to (ii).

Two implications of these features deserve comment. First, they are not nec-
11Minimax regret “locks in” on treatment 0 as soon as κ is below the aforementioned threshold of

2.29.

15



essarily intuitive and may raise questions about minimax regret as a decision crite-
rion. One possible interpretation of the result is that it is due to underspecification
of prior information. Given the observed recidivism, one would not realistically
expect either treatment to induce almost no recidivism if administered to the other
group. Prior restrictions that reflect this will reduce the phenomena; this is illus-
trated by bounded selection with lower values of κ. Second, whenever the in-
version occurs, minimax regret that conditions on judges’ choice is not incentive
compatible: If judges anticipate that their assessment of correct treatment will be
(stochastically) overturned, they have an incentive to misrepresent it. As a result,
it is hard to see how the decision rule could be implemented.

I conclude by briefly contrasting the maximin utility recommendation. Straight-
forward computations show that (plug-in estimators of) maximin utility treatment
rules will completely focus on nonresidential treatment except if outcome opti-
mization is assumed and treatment can condition on T , in which case maximin
utility treatment choice is to implement the judges’ assessment. Indeed, it is easily
shown that under outcome optimization, (δr, δn) = (1, 0) is the only admissible
treatment rule – an unsurprising conclusion given that by assumption, judges know
recidivism probabilities and optimize them already.

5 Conclusion

This paper illustrated the use of recent tools for robust estimation, inference, and
decision making in a real-world application. I analyzed recidivism of young of-
fenders in Utah as a problem of partial identification, derived bounds on the ef-
fect of different treatments under numerous assumptions, estimated these bounds,
provided confidence regions, and analyzed the problem of assigning treatment to
future offenders as a problem in robust decision making, specifically from a min-
imax regret perspective. The results are of some substantive interest, but part of
the purpose was a proof of concept, namely to demonstrate that these new methods
can be used on real-world problems.

I kept the analysis very simple on a number of dimensions. As a result, this
paper can be replicated from the information given in table 1. To give the reader
a better understanding of the range of the proof of concept, I will briefly comment
on some simplifications that were not crucial and could easily be overcome.

First, the dataset contains a number of covariates, especially judicial district
and number of prior offenses, that were used by [14] but not here. If they are be-
lieved to matter, a minimax regret decision maker can – and should, even in small
samples [24, proposition 3] – condition on them by stratifying the sample. If one is
willing to make specific assumptions about the effect of covariates, then one could
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use them as “instrumental variables” or “monotone instrumental variables” as in
[15]. To briefly elaborate the former idea, assume that conditional probabilities
of recidivism do not vary across judicial districts, but judges’ behavior does. Then
one could tighten the bounds by evaluating them separately across districts and tak-
ing the intersection of the resulting bounds. To understand monotone instrumental
variables, assume that recidivism probability increases in the number of prior of-
fenses. Then one could first evaluate bounds separately conditional on the number
of prior offenses and then refine them by “ironing out” any nonmonotonicities.
Both approaches would lead to sharper inference, although at the cost of introduc-
ing additional assumptions as well as nontrivial complications in estimation and
inference.

Second, I compared two treatments, but many other applications will feature
more treatment options. This is not a problem because the generalization of lemma
1 to finitely many treatments is known [22]. A caveat is that closed-form expres-
sions along the lines of proposition 2 will not be possible any more, but numerical
evaluation remains easy.

Third, I evaluated asymptotically efficient approximations to minimax regret
treatment rules rather than exact finite sample rules. This may not strike the reader
as a limitation at all, because it mirrors standard statistical practice. It is worth
mentioning, however, that finite sample minimax regret treatment rules for closely
related problems have been discovered in ongoing research [20][22][24]. Having
said that, this paper’s decision problem is somewhat more complex and may not be
amenable to finite sample analysis.

Fourth, the empirical example featured binary outcomes. More generally, one
might be interested in the expected value of some outcome measure that is dis-
tributed on the unit interval, with high outcomes being desirable. For all results
except the closed-form bounds induced by bounded selection, bounds on such ex-
pectations follow by substituting E(Yt|T = t) for Pr(Yt 6= c|T = t) throughout.
Bounded selection induces bounds that can be expressed as solutions to optimiza-
tion problems but not in closed form. All in all, the analysis easily generalizes
to bounded, although not unbounded, outcomes. This is also true for the existing
finite sample results.

As a final remark, this paper used frequentist language, but the substantive
issues are orthogonal to the Bayesian vs. frequentist divide. Bayesian estimation
under partial identification is analyzed in current research [16]. As for decision
making, I reiterate that imposing a prior on missing data models amounts to making
identifying assumptions and is, therefore, prone to the robustness critique. As soon
as this critique is accommodated, be it by sets of priors or by interval probabilities,
the treatment choice problem from section 4 will be encountered.
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Proofs

Proposition 1 I show the bounds on Pr(Yr = c) given bounded selection, the
other arguments are similar. By assumption,

1

κ

Pr(Yr = c|T = r)

Pr(Yr 6= c|T = r)
≤ Pr(Yr = c|T = n)

Pr(Yr 6= c|T = n)
≤ κ

Pr(Yr = c|T = r)

Pr(Yr 6= c|T = r)
.

Separate algebraic transformation of the l.h. and r.h. inequalities yields

Pr(Yr = c|T = r)

κ− (κ− 1)Pr(Yr = c|T = r)
≤ Pr(Yr = c|T = n)

≤ κPr(Yr = c|T = r)

1 + (κ− 1)Pr(Yr = c|T = r)
.

The bounds can be generated by substituting from this finding into Pr (Yr = c) =
Pr(Yr = c|T = n) Pr(T = n) + Pr(Yr = c|T = r) Pr(T = r).They are tight
because either of the above bounds on Pr(Yr = c|T = n) is contained in [0, 1];
hence, absent further restrictions, Pr(Yr = c|T = n) can attain either value.¥

Proposition 2 The expressions for δMR
pooled follow by substituting from propo-

sition 1 into lemma 1. The expressions for
¡
δMR
r , δMR

n

¢
follow similarly from

bounds on Pr(Yr = c|T = n) and/or Pr(Yn = c|T = r) that follow imme-
diately from the different assumptions. As an illustration, I show δMR

n under
bounded selection. Note that Pr(Yn = c|T = n) is identified and that bounds
on Pr(Yr = c|T = n) were stated in the preceding proof. Substituting into lemma
1 yields

dMR
n =

Pr(Yn = c|T = n)− Pr(Yr=c|T=r)
κ−(κ−1)Pr(Yr=c|T=r)

κPr(Yr=c|T=r)
1+(κ−1)Pr(Yr=c|T=r) −

Pr(Yr=c|T=r)
κ−(κ−1)Pr(Yr=c|T=r)

.

After some algebra, this yields the expression in the proposition.¥
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