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Abstract

This paper precisely delineates the empirical content of consumer rationality in the

following setting: Data are from a repeated cross-section; unobserved heterogeneity is

completely unrestricted; however, there are only two goods. Simple closed-form expres-

sions determine whether (population level) data are consistent with these assumptions.

Bounds on counterfactual distributions of demand, and parameters thereof, follow.

A striking finding is that any rationalizable collection of cross-sectional distributions

can be rationalized by pretending that the ordering of individual consumers on the

budget line is maintained across budgets. Hence, this seemingly strong assumption

does not tighten the bounds.
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1 Introduction

This paper provides simple closed-form results that precisely characterize the empirical con-

tent of random utility models of demand when there are two goods. The leading application

is demand analysis with repeated cross-sections. Thus, we assume that a researcher observes

the distributions of demand generated by some population of consumers on a (finite or in-

finite) set of budgets. We focus on the assumption that every member of the population is

rational in the sense of maximizing a utility function and that utility increases in consump-

tion (“more is better”). We refrain from any other restriction on unobserved heterogeneity.

Under these assumptions, we resolve the following questions:

• Can we decide whether the data could have been generated by the postulated model?
We will henceforth call this the rationalizability question.

• Using the data and only maintaining rationality and “more is better,” how can we

bound the distribution of demand on an as yet unobserved budget? This will be

called the prediction question. Prediction will in general be set-valued, i.e. we provide

bounds on the distribution of interest.

A practically useful aspect of this paper is that we answer these questions through

closed-form expressions. This allows researchers to exactly determine the bite of rationality

assumptions in their data without an explicit — restricted or unrestricted — estimation of

demand systems. Prediction can be reduced to evaluating upper and lower bounding c.d.f.’s

that are provided in closed form. Because these bounding c.d.f.’s exhaust the implications

of rationality for the cross-sectional distribution of demand, tight bounds on many other

parameters follow immediately (e.g., through Stoye (2010)). The explicit display of these

nonparametric conditions reveals that they are rather weak, especially if one wants to extrap-

olate beyond the support of observed prices. This is a reminder that tests of rationalizability

may not be very powerful tests of rationality (in the sense that many irrational populations

will generate rationalizable data), and that one might expect efficiency gains from restricted

estimation to be limited. Some of these issues surfaced in the literature discussed below.

This paper’s main theoretical novelty is the following observation. Consider imposing

rank invariance with respect to consumption of good 2. That is, assume that if consumer 

consumes more of good 2 than consumer  on some budget, she does so on all budgets. This
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is a seemingly very strong restriction. It effectively recovers panel data by force of assump-

tion: The -th quantile of demand for good 2 is now attributable to the same consumer

throughout, and one can test the rationality of that consumer using existing insights from

demand theory. Yet we find that for our purposes, imposing rank invariance is without loss

of generality: A sequence of cross-sectional distributions is rationalizable iff the behavior of

all consumers in the fictitious panel generated by rank invariance is. By the same token,

imposing rank invariance does not affect predictive bounds. This observation is reminiscent

of a well-known finding for nonstochastic demand data, which are rationalizable by a non-

stochastic utility function iff they are also rationalizable by a strictly concave one (Afriat

(1967), Varian (1982)).

Our insights are specific to the two-good case. However, this case is prominent in em-

pirical analysis; for example, consider estimation of demand functions for one good (and

therefore implicitly for that good versus a numeraire) and analysis of labor supply. Recent

papers that nonparametrically analyze demand with unobserved heterogeneity in a two-

good setting include Blundell, Horowitz, and Parey (2012, 2013), Blundell, Kristensen, and

Matzkin (2014), Hausman and Newey (2013), and Manski (2014). Analysis of the two-good

case is frequently motivated by separability assumptions; in the conclusion, we will briefly

comment on the interpretation of our results in that context.

While we point out some links to current research on statistical inference, we do not

directly contribute to the literature on testing rationality in finite samples. See Hoderlein

and Stoye (2014), Manski (2007), and in particular Kitamura and Stoye (2013) for relevant

work.

2 Related Literature

The rationalization and prediction questions motivated a classic literature. For individual

demand, the empirical content of rationality is embodied in the “Afriat inequalities” (Afriat

(1973)); see also Varian (1982) especially for prediction. The extension to stochastic demand

generated by a heterogeneous population was provided by McFadden and Richter ((1991);

see also Block and Marschak (1960), Falmagne (1978), Barberà and Pattanaik (1986), and

McFadden (2005)), but it is not immediate how to compute their criterion.

Nonparametric demand analysis using repeated cross-sections is also the subject of a
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large, recent literature. One important approach is to extract one or more individual demand

systems and then use standard revealed preference analysis. This has the considerable

advantage of leveraging classic results, though at the price of restricting heterogeneity.

The most prominent method within this approach is to investigate rationalizability and

extrapolation of expected demand. This was pioneered by Blundell, Browning, and Craw-

ford (2003, 2008, BBC henceforth), who nonparametrically estimate Engel curves and then

impose the weak axiom of revealed preference (WARP). The approach works in two- and

higher-dimensional commodity spaces, though only the recent extension to the strong axiom

of revealed preference (SARP) by Blundell, Browning, Cherchye, Crawford, de Rock, and

Vermeulen (2014) exhausts the implications of rationalizability in the latter case. Blundell,

Horowitz, and Parey (2012) estimate stochastic demand for one good, and hence effectively

for one good versus a numeraire. Average demand is presumed to be a formally valid demand

function; indeed, constrained estimation of this function imposing the Slutsky conditions is

the main contribution. See Haag, Hoderlein, and Pendakur (2009) for a related exercise in

higher dimensions.

An important alternative is to examine quantiles of demand rather than its expectation.

This was recently pursued by Blundell, Kristensen, and Matzkin (2014, BKM henceforth)

as well as Blundell, Horowitz, and Parey (2013, BHP henceforth). Both restrict attention to

two goods, at least in their empirical implementations; BKM assume finitely many budgets,

whereas BHP consider continuous prices. Both motivate the analysis by the rank invariance

assumption that is central to the present paper.

A third group of papers uses the same assumptions that we do, that is, they give up on

recovering individual demand systems. Hoderlein and Stoye (2014, HS henceforth) bound

the fraction of a population who violate WARP. The analysis is conducted for both two and

more goods, with a qualitative change occurring (and the analysis becoming much more

intricate) in the latter case. The present paper builds on the two-good analysis in HS.

Kitamura and Stoye (2013, KS henceforth) develop and implement a finite sample test of

rationalizability when there are many goods. They also consider prediction, though they do

not provide confidence regions for predicted demand. From a technical point of view, the

scope of their analysis extends ours, with the caveat that they restrict attention to contin-

uous distributions and finite sets of budgets. However, their approach is computationally

demanding, whereas we provide closed-form results that are readily computed even for large
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sets of budgets, as well as additional insights that do not extend to the more general case.

In general, the aggregation or invertibility assumptions used by the three groups of pa-

pers are related as follows. Stochastic rationalizability implies integrability of expected

demand only under specific conditions laid out by Lewbel (2001). The reverse implication

does not hold at all. Invertibility of demand, e.g. through rank invariance, and ratio-

nalizability of the resulting demand systems are jointly (much) stronger than stochastic

rationalizability. However, we discover that this is not true for repeated cross-sections with

two goods, where rationalizability of quantile demand and stochastic rationalizability are

observationally equivalent.

We conclude this section by mentioning some other related papers. Hoderlein (2011)

shows that certain features of rationalizable individual (nonstochastic) demand, like adding

up and standard properties of the Slutsky matrix, are inherited by average demand under

very weak conditions. He develops and implements a corresponding test. The catch is that

the test is of a one-sided implication of rationalizability, so that its power is fundamentally

limited. Manski (2007) analyzes rationalizability and prediction for finite (and in practice,

small) choice sets, and Manski (2014) applies this analysis to a labor-leisure trade-off, i.e. a

setting with two commodities. The environment considered, and questions asked, are similar

to ours, but Manski analyzes discrete budgets, and budgets that are induced by tax rates

might furthermore have kinks. Both of these features mean that Manski’s (2007, 2014) and

our findings are not directly comparable.

3 The Case of Two Budgets

Consider a population of agents, all of whom face the same sequence of budgets in R2+.

Income is normalized to 1 and dropped from notation, so that budgets are characterized by

(normalized) price vectors p = (1 2). We assume that “more is better,” hence consumers

exhaust their budgets. We also assume that individual choice from a given budget is non-

stochastic. Individual demand is, then, given by the function (pa) : R2+×A→ R+, where

(pa) ∈ [0 12] is quantity demanded of good 2, quantity demanded of good 1 is implied
through budget exhaustion, and the unobservable covariate a ∈ A parameterizes heterogene-
ity. From the researcher’s point of view, a is an unobserved random variable with unknown

but fixed cross-sectional distribution, and hence (pa) is a random variable supported on
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[0 12]. The researcher knows, or can estimate, the distribution of  = (pa) for each

p in a sequence of price regimes {p}∈T . We take the index set T and the sequence

{p}∈T to be nonstochastic or conditioned upon. The interpretation of  as time periods is
for concreteness but is not essential. The distribution of  may be continuous, discrete, or

mixed discrete-continuous. Let  denote its c.d.f. and define 
−
 () = Pr(  ); of course,

 and − coincide if the former is continuous. An observable covariate is omitted for sim-

plicity but could easily be introduced; see numerous of the aforecited papers. Similarly, we

assume that the income process is exogenous. Note that, while exogeneity of income and

nonsatiation are substantive assumptions, normalization of income to 1 does not lose any

generality.

The nonstochastic collection of demands {(pa)}∈T induced by a given, fixed a is

rationalizable if there exists a utility function a : R2+ → R such that (pa) maximizes

a on {x ∈ R2+ : px ≤ 1} for all . This obtains iff {(pa)}∈T fulfils the weak axiom of

revealed preference (WARP), i.e. iff there is no pair of time indices ( ) ∈ T ×T such that
1
¡
1− 2(pa)

¢
1 + 2(pa) ≤ 1 and 1

¡
1− 2 (pa)

¢
1 + 2 (pa) ≤ 1, with at

least one inequality strict. Furthermore, recall Afriat’s (1967) finding that if nonstochastic

demand is rationalizable, then it is rationalizable by a strictly convex utility function. Hence,

strict convexity of a can be imposed without further loss of generality, in which case

(pa) = argmax∈[012 ] a(
¡
1− 2

¢
1 ).

A collection of cross-sectional distributions {}∈T is stochastically rationalizable if

there exists a distribution  over strictly convex utility functions  such that

() = Pr(arg max
∈[012 ]

(
¡
1− 2

¢
1 ) ≤ )

where the probability is evaluated with respect to . By choosing  to be the distribution of

a induced by the distribution of a, one can see that {}∈T is stochastically rationalizable
if {(pa)}∈T is rationalizable for each a. The converse does not hold: A population

consisting of irrational (in the sense of violating WARP) agents may induce a rationalizable

collection of cross-sectional demand distributions.1

The following assumption will play a prominent role.2

1The distribution  defines a Random Utility Model; thus, {}∈T is stochastically rationalizable iff it

can arise as population distribution from some Random Utility Model. In principle, the model could also be

interpreted as describing single-agent stochastic choice, but our assumptions are geared to demand analysis

with repeated cross-sections.
2The name “rank invariance” is inspired by Chernozhukov and Hansen (2005), who impose the assumption
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Rank Invariance

A = [0 1] (possibly after normalization) and (pa) is nondecreasing in a for every p.

For continuously distributed demand, rank invariance implies that across all observed

budgets and for any  ∈ [0 1], the -quantile of the demand distribution is attributable to
the same consumer. After estimating these quantiles for different budgets, this allows one

to leverage single-consumer demand theory, as is pursued by BHP and BKM.

Rank invariance does have “microfoundations” in the sense that with two goods, it follows

from restrictions on structural parameters which more generally would allow one to recover

the underlying individual demand systems; see Beckert and Blundell (2008) and references

therein. Nonetheless, it is intuitively restrictive, is consistent with random coefficient models

only in knife-edge cases, and is contradicted in lab experiments.3

Initially consider one pair of budgets, thus T = { }. In this case, stochastic rational-
izability can be characterized as follows.

Proposition 1 Fix any price vectors (pp); w.l.o.g., assume 
2
 ≤ 2 . Let

∗ =
¡
1 − 1

¢

¡
1

2
 − 1

2


¢


the quantity at which the corresponding budget lines intersect. Then the following statements

are mutually equivalent:

(i) The cross-sectional distributions of demand on budgets p and p can be stochastically

rationalized.

(ii) The cross-sectional distributions of demand on budgets p and p can be stochasti-

cally rationalized by assuming rank invariance.

(iii)

Pr ( ≤ ∗) + Pr ( ≥ ∗)−min {Pr ( = ∗) Pr ( = ∗)} ≤ 1
in a treatment effects context. Hoderlein and Stoye (2014) call the same assumption “quantile constancy.”

3Andreoni and Miller (2002) observe repeated choices by the same consumers in a sequence of linear

budget sets with two goods. Rank invariance is frequently violated; one violation is visually apparent from

comparing panels c and d of their Figure 2. We are not aware of direct tests of rank invariance outide the

lab. This would require consumer panel data, which are rare; see Christensen (2014) for references and a

discussion. That said, the heterogeneity of income effects estimated by Hoderlein, Klemelä, and Mammen

(2010) and Christensen (2014) would preclude rank invariance in two-good versions of their models.
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which with continuous demand is equivalent to

(
∗
) ≤ (

∗
)

If the budgets do not intersect, all conditions hold vacuously (the last one because the

intersection of budgets is not in the positive quadrant, thus the inequalities necessarily hold

with equality), illustrating that consumer rationality is not falsifiable in this case.

Proof. Individual demand ((pa) (pa)) violates WARP iff (pa) ≤ ∗ and

(pa) ≥ ∗ but not (pa) = (pa) = ∗. Thus demand is stochastically rational-

izable if the joint population distribution of ( ) fulfils Pr ( ≤ ∗  ≥ ∗) − Pr( =
 = ∗) = 0. Now, Pr ( ≤ ∗  ≥ ∗) ≥ max{Pr ( ≤ ∗) + Pr ( ≥ ∗)− 1 0} by the
Fréchet-Hoeffding lower bound, whereas Pr( =  = ∗) ≤ min {Pr ( = ∗) Pr ( = ∗)}
by the Fréchet-Hoeffding upper bound, thus the probability in question is bounded below

by max{Pr ( ≤ ∗) + Pr ( ≥ ∗) − min {Pr ( = ∗) Pr ( = ∗)} − 1 0} and can be
zero only if condition (iii) holds. This yields (i)⇒(iii). Next, condition (iii) implies that
Pr (  ∗) + Pr ( ≥ ∗) ≤ 1, hence that Pr (  ∗) ≤ Pr (  ∗). If one were to

assume rank invariance, it would follow that any consumer with   ∗ also has   ∗.

Similarly, every consumer with   ∗ would have   ∗. Hence, every consumer would

fulfil WARP. It follows that if condition (iii) holds, then one can rationalize observed demand

by imposing rank invariance. This establishes (iii)⇒(ii). (ii)⇒(i) is obvious.

The simplified version of condition (iii) for continuous demand has a visual interpretation:

As a budget plane is rotated, the probability mass on the part of the plane that is rotated

toward the origin must shrink. We emphasize that (i)⇔(iii) was known in the literature.4

This paper’s main novelty is to recognize (i)⇔(ii), i.e. that the marginal distributions of
choices on two budgets are jointly rationalizable iff they are rationalizable by imposing rank

invariance, and to spell out some implications of this fact.

An important application is counterfactual prediction. Given the distribution  of 

and assuming rationality, a candidate distribution  of  is rationalizable with or without

rank invariance iff ( ) jointly fulfil (iii). This insight and the resulting bounds are

summarized in the following corollary.

4See McFadden and Richter (1991), Matzkin (2006, for the continuous case), and HS. We provide an

independent proof because it is very short and instructive. (iii)⇒(i) can also be proved by combining results
in Bandyopadhyay, Dasgupta, and Pattanaik (2002, 2004).
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Corollary 1 Fix any price vectors (pp) and let the distribution of  be known. If one

assumes rationalizability of demand, then:

(i) If 2  2, then − (
∗
) ≤ − (

∗
) and (

∗
) ≤ (

∗
).

(ii) If 2  2, then − (
∗
) ≥ − (

∗
) and (

∗
) ≥ (

∗
).

(iii)  is not otherwise restricted, nor are there cross-restrictions across values of 

(other than  being a c.d.f.).

All of (i)-(iii) remain true if one also imposes rank invariance.

Remark 1 The set of distributions consistent with these bounds is not closed under weak

convergence, and the implied bounds on many parameters are open. To see this, consider

minimization of  (and hence maximization of the distribution of  in the sense of first-

order dominance) in case (ii). The solution is approximated by a point mass at  = 12

and a second point mass that approaches ∗ from below. The limit of this sequence violates

WARP. Among other things, this implies that the identified set for expected demand is open

at the upper bound.

For many purposes, it would seem natural to replace the bounds with their closure; indeed,

this will typically make no difference in estimation. This closure is succinctly characterized

as the set of distributions whose c.d.f.  fulfils  () ≤  () ≤  (), where

 () =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

∗
) if 2  2 and  ≥ ∗

1 if  = 12

0 otherwise.

 () =

⎧⎨⎩ − (
∗
) if 2  2 and   ∗

1 otherwise.

This is the “bounds on c.d.f.’s” scenario considered at length in Stoye (2010). Hence, results

in Stoye (2010) now yield (the closure of) sharp, joint bounds on many combinations of

parameters of , e.g. its expectation and variance or median and interquartile range.

Again, a remarkable aspect of the finding is that rank invariance, even though it is

substantively so strong as to be incredible in many applications, does not restrict the dis-

tribution of demand on a counterfactual budget. For a visual illustration, consider figure 1.

Say that observed data were a generated by a population of size 4 who chose pairs of con-
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Figure 1: An illustration of Lemma 1.
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sumption bundles {( ) () () ()}, respectively.5 Observe that all consumers
fulfil WARP but that the population violates rank invariance.

The researcher observed only the implied cross-sectional distributions, which are uni-

form on {} and {}, respectively. Having been generated by rational
consumers, one would hope that these cross-sectional distributions are rationalizable. In-

deed, condition (iii) from Proposition 1 holds with slack. Proposition 1 then asserts that

the cross-sectional distributions can be rationalized by imposing rank invariance, i.e. by as-

suming that consumption pairs {( ) () () ()} are attributable to the same
consumers. While the assumption is false in the example, the rationalization is indeed suc-

cessful — all of these consumption pairs fulfil WARP. The punch line of Proposition 1 is that

this example generalizes.

The point is not that rank invariance is a weak restriction on the underlying population;

to the contrary, it is unlikely to hold. However, the assumptions of stochastic rationalizability

and “stochastic rationalizability plus rank invariance” are observationally equivalent for

repeated cross-sections with two goods. If repeated observations existed for at least some

consumers, rank invariance would have bite. For example, if it were known that the consumer

who picked  from the first budget picked  from the second one, then rank invariance would

imply that  and  were also picked by the same consumer; but, as the example illustrates,

this was not implied by rationalizability alone.

We further discuss the importance of these findings after generalizing them. We conclude

this section by pointing out that Proposition 1 and Corollary 2 could be easily implemented

with finite samples. For example, the hypothesis of rationalizability applied to continuously

distributed demand is just

0 : Pr (  ∗) + Pr (  ∗) ≤ 1

a standard one-sided testing problem.

4 Extension to Many Budgets

A main reason that these results are interesting is that with two goods and when budgets are

exhausted, WARP implies the strong axiom of revealed preference (SARP) and, therefore,

5For clarity, we here abstract from any measurement error or any other “” term that would induce

violations of rank invariance in observed data even if it were a true feature of the distribution of preferences.
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characterizes rationalizability of individual demand (Rose (1958)).6 Hence, if there are

two goods but many budgets, the rationalizability and prediction questions are resolved by

applying Proposition 1 to every pair of budgets. Formally, consider a collection (p )∈T

of price vectors and corresponding demand distributions, where the index set T is initially

assumed finite but can be arbitrarily large. Then we have:

Proposition 2 Fix any finite collection {p }∈T . The following statements are equiva-
lent:

(i) The cross-sectional distributions of demand on budgets {p}∈T can be stochastically
rationalized.

(ii) The cross-sectional distributions of demand on budgets {p}∈T can be stochastically
rationalized by assuming rank invariance.

(iii) Condition (iii) from Proposition 1 applies to every (p p ) with ( ) ∈
T × T .

Proof. Suppose condition (iii) is violated for one ( ), then some consumer must violate

WARP and hence SARP. Thus, (i)⇒(iii). Next, suppose the condition holds for all ( ).
Rank invariance would then be a coherent assumption in the sense that it implies a well-

defined joint distribution of demand on all budgets. Furthermore, it would imply that, by

(iii)⇒(ii) from Proposition 1, all consumers fulfil WARP and hence SARP. Thus, (iii)⇒(ii).
(ii)⇒(i) is again obvious.

Some book-keeping leads to the following corollary.

Corollary 2 Fix the collection {p }∈T , but assume that  corresponding to some bud-
get of interest p is unknown. Assuming rationalizability only,  can be bounded as follows:

max

½
max

∈T :22∗
(

∗
) max

∈T :22∗=
− (

∗
)

¾
≤ − () ≤ min

∈T :22∗≥
− (

∗
)

max
∈T :22∗=

(
∗
) ≤ () ≤ min

½
min

∈T :22∗
− (

∗
) min

∈T :22∗=
(

∗
)

¾


with the understanding that max-operators corresponding to empty sets are ignored. These

bounds simplify to

max
∈T :22∗≤

(
∗
) ≤ − () and () ≤ min

∈T :22∗≥
(

∗
)

6Recall that SARP excludes revealed preference cyces of arbitrary length. In this paper’s notation, call

(pa) revealed preferred to (pa) if 
1



1− 2(pa)


1 + 2(pa) ≤ 1, then there must not exist

any finite length cycle of revealed preference in which at least one of the inequalities is strict.
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if all observed distributions are continuous. They are sharp uniformly in , that is, any c.d.f.

that fulfils them is a possible distribution of demand.

All of these statements are true with and without imposing rank invariance.

Remark 2 As before, the bounds are open (under weak convergence) but their closure can

be characterized in terms of sandwich c.d.f.’s, which now are

 () =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
max∈T :22∗≤ (

∗
)

if the maximum is over a nonempty set

and  ∈ [0 12),
1 if  = 12,

0 otherwise.

 () =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min∈T :22∗ 

−
 (

∗
)

if the minimum is over a nonempty set

and  ∈ [0 12),
1 otherwise.

The closure of bounds on numerous parameters of  follows just as in remark 1.

Remark 3 To compute joint bounds on cross-sectional distributions on a set of budgets

{p1 p2    }, one can in principle proceed as follows. Use corollary 4 to bound 1 . For

each candidate distribution 1 within the identified set, compute the identified set for 2

taking {p }∈T ∪{p1  1} as known. Iterate. The resulting bounds are not to be confused
with bounds on the joint distribution. However, they imply best possible joint bounds across

budgets on all parameters that only depend on cross-sectional distributions, e.g. on expected

demand. These joint bounds are not in general the Cartesian product of the individual

bounds.

While computational cost of fully characterizing these joint bounds will escalate quickly,

two observations are of interest. First, it is easy to verify whether a given tuple of candidate

distributions is in the identified set. More importantly, some additional book-keeping reveals

that
©
 1

  2

ª
and

©
 1  2

ª
— but not, in general,

©
 1

 2

ª
— can be approximated by

mutually consistent c.d.f.’s. By Proposition 3, this consistency extends to larger collections

of counterfactual budgets. Thus, for any nonsingleton set of counterfactual budgets and any

parameter that respects first-order dominance, all lower as well as all upper bounds on the

parameter — though not all combinations thereof — can be achieved simultaneously across

counterfactual budgets. For example, the joint identification region for expected demand

across several counterfactual budgets contains its own meet and join.
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Remark 4 The data are rationalizable iff prediction bounds are nonempty for all counter-

factual budgets. To economize on case distinctions, we verify this in the continuous case.

Here, the bound on () will be empty if the lower bound exceeds the upper one, i.e. if

there exist   s.t. 2  2  2, 
∗
 ≤ ∗, and (

∗
)  (

∗
). In this case, comparison

of budgets  and  would reveal a violation of the condition from Proposition 1(iii) because

it would follow that ∗ ≥ ∗ ≥ ∗, thus (
∗
) ≥ (

∗
) and (

∗
) ≤ (

∗
), thus

(
∗
)  (

∗
). Thus, if the data are rationalizable, then the bounds are nonempty. On

the other hand, if data are not rationalizable, this fact must be apparent from at least one

pair of price vectors (pp). Let p be a proper mixture of p and p, then prediction

bounds for  are empty. Note, however, that even if data are not rationalizable, bounds

may be nonempty for some specific choices of p.

Remark 5 Proposition 3 and corollary 4 extend to infinite index sets T under mild regular-
ity conditions, e.g. McFadden’s (2005, Corollary 5.3.2) smoothness assumptions on demand.

The reason is that under these conditions, McFadden (2005) shows that rationalizability is

implied by his Axiom of Revealed Stochastic Preference (ARSP), yet any instance of ARSP

applies to a finite selection from T (though it must hold for all such selections), and WARP
for individual demand implies SARP for individual demand, hence ARSP, on every such

selection.

Remark 6 For this remark only, assume that the data are consistent with rationality and

that the focus is on extrapolation to cross-sectional distributions on one or more counter-

factual budgets. In this case, it is w.l.o.g. to assume rank invariance even if one has panel

data, i.e. if consumers’ identities are tracked across budgets, irrespective of whether rank

invariance holds in these data. To see this, recall that predictive bounds on  will collect

the corresponding marginals of all rationalizable joint distributions of demand on budgets

{p}∈T ∪ {p}. Any such joint distribution will imply a rationalizable sequence of marginal
distributions. By Proposition 3, that same sequence is then also rationalizable through rank

invariance. Thus, for the specific purpose outlined in this remark, the panel dimension of

the data can be discarded in favor of imposing rank invariance.7

7This remark applies only to nonparametric revealed preference analysis along the lines of this paper, e.g.

nonparametric extrapolation from data in Andreoni and Miller (2002). If one uses panel data to estimate

more structured models, the panel dimension might certainly be useful. Also, a given panel data set might

reveal violations of WARP. If one is willing to attribute them to data issues but wants to pose a well-
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Going back to Figure 1, the additional insight needed to generate Proposition 3 is twofold.

First, WARP implies SARP, so all pairwise comparisons of budgets jointly suffice to check

rationalizability. Second, the rank invariance assumption is consistent across budgets in the

following sense: If we “link” the distributions on budget 1 and 2 through rank invariance and

do the same for budgets 2 and 3, then we implicitly defined a link between budgets 1 and

3 that also corresponds to rank invariance. Hence, the fictitious panel generated through

imposing rank invariance is well-defined. A similar consistency does not, of course, obtain

for arbitrary pairwise copulas.

The conditions from Proposition 3(iii) are readily verifiable even when T is large. This

is in stark contrast to checking ARSP more generally. The currently most powerful com-

putational approach to the latter was provided by KS. Using advanced numerical solvers,

KS are able to analyze up to  = 8 budgets when there are three goods and could analyze

substantially more budgets when there are only two goods. The complexity of their problem

increases faster than exponentially with  , however. In contrast, verifying the condition of

Proposition 3(iii) requires at most  ( − 1)2 checks of the inequality in Proposition 1(iii).
Regarding the strength of these bounds, note that  () and  () are potentially close

to each other, and bounds therefore potentially tight, as long as the maxima and minima

in their definitions are over nonempty sets. This corresponds to extrapolation to budgets

that interpolate between observed ones. As one leaves the support of observed budgets,

the bounds become very wide. A similar issue is encountered in BBC’s prediction exercise

and seems to be a fundamental limitation of nonparametric demand extrapolation based on

weak rationality restrictions. Interestingly, an apparently substantial addition of structure

(i.e., rank invariance) does not affect this finding.

Regarding finite sample inference, the simultaneous testing of rationality on many bud-

gets raises subtle issues. In general, it would amount to specification testing of a moment

inequalities model, an area of current research. Here are some ideas. First, with finite index

set T , the null of rationalizability is the conjunction of finitely many inequality hypotheses.
Second, in the continuous case, this null is equivalent to

0 : max
∈T

{Pr (  ∗) + Pr (  ∗)} ≤ 1

defined extrapolation problem, one will have to “iron them out” in some manner; else, there will not exist a

rationalizable joint distribution of choices over all budgets. Our remark then applies to the ironed out data.

15



which can be tested using the tools developed in Chernozhukov, Lee, and Rosen’s (2013)

work on intersection bounds. Similarly, the bounds on  from corollary 4 are intersection

bounds. Finally, asymptotic results in KS apply to this paper’s setting, though they do not

exploit the special structure of the two-good case.

5 Conclusion

We focus in this conclusion on some extensions and on the methodological relevance of our

finding, in particular the observation that if rationalizability is assumed, then rank invari-

ance does not further constrain cross-sectional distributions. This finding is reminiscent of

the well-known observation (Varian (1982)) that if rationalizability of individual demand

(in the sense of SARP) is assumed, then assuming convex preferences has no further empir-

ical content. The findings arise from very different features of the problem and are easily

combined. Thus, if one assumes rationalizability of demand, then one may as well assume

rationalizability through a set of convex utility functions that are parameterized by a ∈ [0 1]
and where revealed taste for good 2 increases in a.

An immediate implication is that none of the identification of counterfactual demand

in BKM is owed to their seemingly restrictive rank invariance assumption, including if one

were to apply their methods to panel data. This makes their method widely applicable.

At the same time, for the two-good space of their empirical implementation, it suggests

an alternative approach because it implies that up to estimation uncertainty, their bounds

recover the closed-form characterizations reported above. One could use Chernozhukov, Lee,

and Rosen’s (2013) work on intersection bounds to directly test these characterizations and

estimate the predictive bounds, sidestepping the construction of a fictitious “-quantile”

consumer. Also, BKM focus on bounding quantiles of demand. While bounds on other

features of demand are logically implied, it would arguably be more straightforward to

bound expected demand, say, by directly computing the objects (   ) defined earlier.

We also note that the finding can be turned around: By assuming that demand is

monotonic in unobservables, one will never implicitly assume rationalizability when there is

none, nor assume it away when it actually obtains. Given that rank invariance assumptions

are generally considered strong, and given that more structured models of demand which

allow for heterogeneity typically violate it, this arguably illustrates that rationalizability is a
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rather weak restriction on data. This assessment is corroborated by inspection of the bounds

and ties in with other findings in the literature, e.g. the observation that imposing negative

semidefiniteness in nonparametric demand estimation does not affect the estimator’s rate of

convergence (Haag, Hoderlein, and Pendakur (2009)).

Analysis of the two-good case is frequently, and sometimes implicitly, motivated by sep-

arability conditions on utility. In this case, assumptions well beyond rationality must be

invoked to motivate the setting, and this may seem to undercut the motivation for testing a

bare-bones rationality assumption within the setting. However, there is a growing literature

on demand estimation using minimal assumptions beyond separability. Researchers inter-

ested in this line of work might want to learn the implications of assuming that agents act

as if the choice between two goods could be separated from their other decision problems,

but without any restriction on their preferences beyond this. The present paper provides

just that analysis.

One might also wonder about generalizability of results to settings where there are two

commodities, but budget sets are not fully described by linear budget constraints. Under

mild conditions outlined in Polisson and Quah (2013), our findings generalize to the case

where consumers are constrained to a discrete subset X of R2+, but can pick any point in this
subset that is below a given budget plane, i.e. prices p induce budget {x ∈ X : px ≤ 1}. This
follows from combining Polisson and Quah’s (2013) insights with the observation that, as

revealed by close inspection of Rose (1958), WARP continues to imply SARP in this setting.

Rose’s (1958) finding, and therefore our results, do not extend to arbitrary collections of

discrete choice sets, even if choice objects are elements of R2, nor if budgets can be kinked,

as is relevant in analysis of labor supply.

We conclude with some remarks about the case of more than two goods. Our finding

about rank invariance does not seem to generalize. To begin, it is unclear how to define rank

invariance in higher dimensions: Budget hyperplanes now have two or more dimensions, so

that there is no obvious ranking of consumers on them. Imposing rank invariance for one

commodity is arbitrary, and imposing it for all commodities implies knife-edge conditions

on cross-sectional distributions. However, we are extremely skeptical that any adaptation

of rank invariance could be implied by, or even generally consistent with, stochastic ratio-

nalizability. For example, consider price vectors p = (05 03 02) and p = (02 1 03)

and cross-sectional distributions of demand that are uniform over {(10 0 25)  (11 15 0)} in
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period  and {(40 2 0)  (2 0 32)} in period . Stochastic rationalizability obtains because

if all consumers who choose (10 0 25) also choose (40 2 0), then each individual demand

is rationalizable. However, rank invariance for any one good (or for all three, which is

logically possible here due to careful rigging of the example) implies that consumers who

choose (10 0 25) also choose (2 0 32) and then violate WARP. Less stringent adaptations of

rank invariance, like association or positive quadrant dependence,8 will still require positive

correlation between choice of (10 0 25) and (2 0 32) and, therefore, contradict stochastic

rationalizability.

That said, our closed-form expressions could still be used to test a necessary condition

for rationalizability and to construct outer (non-tight) bounds on counterfactual demand.

These results are theoretically less satisfying than those in KS, but are much easier to im-

plement. Cosaert and Demuynck (2014) and Kawaguchi (2012) recently made intermediate

proposals, both in terms of strength of conditions and of computational expense; recall also

that Hoderlein (2011) provided other restrictions that are (under weak assumptions) neces-

sary but not sufficient for rationalizability. Comparing the performance of these approaches

in empirical examples would be a fruitful area for future research.
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