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Abstract

This paper develops an estimating equation approach to construct confidence intervals for autocorrela-
tions for time series with general stationary serial correlation structures. Inference is heteroskedasticity
and autocorrelation robust (HAR). It is well known that the Bartlett formula Bartlett (1946) can pro-
vide invalid inference when innovations are not independent and identically distributed (i.i.d.). Romano
and Thombs (1996) derive the asymptotic distribution of sample autocorrelations under weak assump-
tions although they avoid estimation of the variances of sample autocorrelations and suggest resampling
schemes to obtain confidence intervals. As an alternative we provide an easy to implement estimating
equation approach for estimating autocorrelations and their variances. The asymptotic variances take
sandwich forms which can be estimated using well known HAR variance estimators. Resulting t-statistics
can be implemented with fixed-smoothing critical values. Confidence intervals using null imposed vari-
ance estimators are included in the analysis. Monte Carlo simulations show our approach is robust to
innovations that are not i.i.d. and works reasonably well across various serial correlation structures.
We confirm that using fixed-smoothing critical values provides size improvements especially in small
samples. Consistent with Lazarus, Lewis, Stock and Watson (2018) we find that imposing the null when
estimating the asymptotic variance can reduce finite sample size distortions. An empirical illustration
using S&P 500 index returns shows that conclusions about market efficiency and volatility clustering
during pre and post-Covid periods using our approach contrast with conclusions using traditional (and
often incorrectly used) methods.

Keywords: Sample Autocorrelation, White Noise, Long Run Variance, Robust Inference, Fixed-smoothing
Asymptotics

1 Introduction

The autocorrelation function is a fundamental quantity in time series analysis with the sample autoco-

variance routinely computed for observed time series. Approximating the sampling distribution of the
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estimated autocorrelation is a key tool in understanding the potential population autocorrelation and the

underlying dynamics of a time series. The seminal work by Bartlett (1946) derived a formula, known as the

‘Bartlett formula’, for the asymptotic covariance matrix of sample autocorrelations under the assumption

that the underlying time series is covariance stationary with independent, identically, distributed (i.i.d.)

innovations. For a given parametric specification of the autocorrelation function, the Bartlett formula

enables one to compute feasible confidence intervals and conduct hypothesis testing for autocorrelations.

However, it has been pointed out in the literature that inference using the Bartlett formula is invalid when

the i.i.d. innovation assumption is relaxed. See Romano and Thombs (1996) and references.

Upon relaxing the i.i.d. assumption, Romano and Thombs (1996) derived the asymptotic distribution

of sample autocorrelations when the underlying innovations are only uncorrelated. Allowing innovations to

be uncorrelated but otherwise dependent permits many stationary nonlinear processes frequently used in

time series analysis. Another advantage of the approach of Romano and Thombs (1996) is that it does not

depend on any particular structure for generating the stationary processes. However, to compute confidence

intervals for sample autocorrelations they suggest using the moving block bootstrap and subsampling

schemes that may have been viewed as computationally intensive at the time the Romano and Thombs

(1996) paper was written. This may be the reason their methods have not been adopted by widely used

software packages. In contrast to resampling methods, Lobato (2001) employed nonparametric kernel

estimators of the asymptotic variance of sample autocorrelations. A recent paper by Wang and Sun (2020)

used a similar approach but with orthonormal series variance estimators. Both of those papers focused on

tests of zero autocorrelation and not the construction of generally valid confidence intervals for estimated

autocorrelations.

There is a related strand of the literature that focuses on extending Bartlett’s asymptotic variance

formula that is valid for uncorrelated but potentially dependent innovations. Francq and Zaköıan (2009)

derive a generalized Bartlett formula for the case where innovations of the time series process are weak

white noise process. The formula obtained by Francq and Zaköıan (2009) can be viewed as a closed-form

version of the general asymptotic variance given by Romano and Thombs (1996) that is represented in
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terms of the autocorrelation function of the time series, the autocorrelation of the square of the innovations,

and a kurtosis parameter. Their formula also relies on a symmetry assumption for the fourth moments of

the innovations. Implementation of the generalized Bartlett formula is relatively straightforward for simple

autocorrelation structures like moving average models but is very complicated in general. It is likely for

this reason that the generalized Bartlett variance formula has not been implemented in standard software

packages.

While the literature has highlighted the dependence of the original Bartlett formula on the assumption

of i.i.d. innovations, many modern statistical packages still rely on Bartlett formula for deriving variance

estimators of sample autocorrelations and for inference about autocorrelations. Furthermore, even if the

assumption of i.i.d. innovations is valid, many software packages implement a version of the Bartlett formula

that is not valid for general stationary serial correlation structures. For example, in Stata’s manual, the

formula for the estimated variance of, ρ̂k, the sample autocorrelation at lag k, is given by

V âr (ρ̂k) =

{
1/T k = 1
1
T

{
1 + 2

∑k−1
i=1 ρ̂2i

}
k > 1,

(1)

where T is the sample size. This formula assumes, for the purposes of computing an estimated variance

for ρ̂k and conducting inference about ρk, that the true time series is a moving average process with lag

k − 1, i.e. MA(k − 1). This is equivalent to carrying out a sequence of tests where ρ̂1 is used to test

hypothesis about ρ1 conditional on the series being i.i.d. (MA(0)), ρ̂2 is used to test hypothesis about ρ2

conditional on the series being MA(1), ..., ρ̂k is used to test hypothesis about ρk conditional on the series

being is MA(k− 1). Suppose the series is MA(3). Then the variance formulas for ρ̂1, ρ̂2 and ρ̂3 are invalid

along with corresponding confidence intervals. What is missing in the statistical packages is a method for

computing confidence intervals for ρ̂k (values of ρk that cannot be rejected by a test), that are valid for

general stationary serial correlation structures and do not require the assumption of i.i.d. innovations.

In this paper we develop a simple estimating equation approach for computing confidence intervals

for estimated autocorrelations. The estimating equation approach extends the Lobato (2001) and Wang

and Sun (2020) approaches to the general stationary serial correlation case. Except in narrow special
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cases, the asymptotic variances of the estimated autocorrelations take a sandwich form and well known

heteroskedasticity autocorrelation robust (HAR) variance estimators can be used in a straightforward

manner. We focus on kernel and orthonormal series HAR estimators and use fixed-smoothing theory

(Kiefer and Vogelsang (2005), Sun (2013)) to generate critical values for computing confidence intervals.

Following Lazarus et al. (2018) we consider HAR variance estimators that impose the null leading to more

reliable inference. Confidence intervals using null-imposed HAR variance estimators are obtained using

similar methods as used by Vogelsang and Nawaz (2017). Our approach is easy to implement and can be

viewed as a method for operationalizing Romano and Thombs (1996) without needing resampling methods

for valid first order asymptotic inference.

The paper is organized as follows. Section 2 reviews estimation and inference of/for the autocorrelation

function of a stationary time series. In section 3 we develop a simple estimating equation approach using

HAR tests for inference. We show that fixed-smoothing asymptotics applies to the test statistics. Our

theory allows innovations of the time series to be white noise driven by random variables whose distributions

are potentially skewed. We show how to calculate confidence intervals when the null is imposed on the

variance estimator. Section 4 provides a simulation study that documents finite sample null rejection

probabilities and power for various data generating processes (DGPs). Comparisons are made to existing

approaches. Section 5 provides an empirical application using returns of the S&P 500 stock index. Some

implications about market efficiency and volatility clustering of the S&P 500 index during pre- and post-

Covid periods are obtained. Section 6 concludes the paper.

2 Preliminaries

Consider a real-valued covariance stationary time series, {yt}, with mean E(yt) = µ. The autocovariance

and autocorrelation functions for yt are given as

γk = E [(yt − µ) (yt−k − µ)] , k = 0,±1,±2, . . . ,

ρk = γk/γ0.
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For a sample of T observations {y1, y2, ..., yT } define the sample autocovariance function as

γ̂k = T−1
T∑

t=k+1

(yt − ȳ) (yt−k − ȳ) , k = 0, 1, 2, . . . , T − 1,

where ȳ = T−1
∑T

t=1 yt, and define the sample autocorrelation function as

ρ̂k = γ̂k/γ̂0. (2)

The seminal work of Bartlett (1946) provided a formula, now known as Bartlett’s formula, for the

asymptotic variances and covariances of ρ̂k when yt is a stationary linear time series driven by i.i.d.

innovations. Let yt be expressed by the Wold decomposition,

yt − µ =
∞∑

m=−∞
ϕmϵt−m,

where ϵt is an i.i.d.(0, σ2) innovation. Then the vector of sample autocorrelations up to lag m, ρ̂ =

(ρ̂1, . . . , ρ̂m)′, asymptotically follows a normal distribution with mean ρ, the vector of corresponding pop-

ulation autocorrelations up to lag m. The asymptotic variance-covariance matrix of ρ̂ is given by T−1VB

with vBi,j , the ijth element of the m×m matrix VB, given by Bartlett’s formula:

vBi,j =
∞∑

ℓ=−∞

{
ρℓ+iρℓ+j + ρℓ−iρℓ+j + 2ρiρjρ

2
ℓ − 2ρiρℓρℓ+j − 2ρjρℓρℓ+i}.

Despite its wide usage in textbooks and statistical packages, Bartlett’s formula is only valid when ϵt

is i.i.d. Use of Bartlett’s formula for inference is potentially invalid when ϵt is an uncorrelated process

(e.g. white noise process), but not i.i.d.. Specifically, using mixing conditions that allow white noise

innovations, Romano and Thombs (1996) derived an asymptotic normality result for
√
T (ρ̂ − ρ) with

asymptotic variance-covariance matrix VRT with ijth elements given by

vRT
i,j = γ−2

0 [ci+1,j+1 − ρic1,j+1 − ρjc1,i+1 + ρiρjc1,1] ,

where ci+1,j+1 =
∑∞

d=−∞ cov (y0yi, ydyd+j). Note that Romano and Thombs (1996) showed that ci+1,j+1 is

the (i+1, j+1)th element of the asymptotic variance-covariance matrix of
√
T (γ̂−γ) where γ = (γ0, ..., γm)′
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and γ̂ = (γ̂0, ..., γ̂m)′. Given the complicated nature of vRT
i,j , Romano and Thombs (1996) propose resam-

pling methods for constructing confidence intervals for ρk. For tests of zero autocorrelation Lobato (2001)

proposed nonparametric kernel estimators of ci+1,j+1 and Wang and Sun (2020) used series to estimate

ci+1,j+1. Neither study focused on confidence intervals for ρk when the time series has autocorrelation.

Closed form formulas for vRT
i,j were obtained by Francq and Zaköıan (2009) for some models of yt

with ϵt being white noise with a symmetry condition imposed on the fourth moments of ϵt. Francq and

Zaköıan (2009) label these formulas ‘generalized Bartlett’ formulas. For example, suppose that yt is a weak

white noise process (i.e. yt = ϵt where ϵt is a weak white noise process). The generalized Bartlett formula

is given by vGB
i,j = vBi,j + vB

∗
i,j where

vBi,i = 1, vB
∗

i,i =
γϵ2(i)

[γϵ(0)]
2 , (3)

and vBi,j = vB
∗

i,j = 0 if i ̸= j with γϵ2(i) being the autocovariance function of ϵ2t at lag i and γ2ϵ (0) being

the variance of ϵt. When the data generating process of yt is an MA(q) model, Francq and Zaköıan (2009)

show that

vBi,i =

q∑
ℓ=−q

ρ2ℓ , vB
∗

i,i =
1

[γϵ(0)]
2

q∑
ℓ=−q

γϵ2(i− ℓ)ρ2ℓ ,

for all i > q. Francq and Zaköıan (2009) do not provide formulas for i ≤ q.

While the results of Lobato (2001), Wang and Sun (2020) and Francq and Zaköıan (2009) are useful

in specific contexts, they are not comprehensive enough to be used to construct confidence intervals for

ρk. Therefore, we develop a systematic and simple approach to the construction of confidence intervals

that does not require resampling methods. Because our approach is based on the inversion of t-statistics,

resampling methods could be used to obtain critical values for the construction of confidence intervals. We

leave such an investigation to future research.

3 Theory

3.1 An Estimating Equation Approach For Autocorrelation Inference

In this section we develop an estimating equation approach that uses HAR t-statistics for inference re-

garding autocorrelations where we relax the assumption that the innovations, ϵt, are i.i.d.. There are
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a few advantages of this approach. First, the HAR tests we use are well known and easy to apply in

practice. Second, we show that fixed-smoothing asymptotics can be used for the test statistics providing

critical values that depend on tuning parameters used to estimate variances. Third, it is straightforward

to construct confidence intervals for both the cases where the null hypothesis about the autocorrelation is

a) imposed and b) not imposed on the variance estimator. As we show, imposing the null on the variance

estimator can help reduce distortions in finite sample rejections under the null similar to what was found

for stationary time series regressions by Lazarus et al. (2018) and Vogelsang (2018).

Consider the following estimation equation for a stationary time series yt:

yt = c+ ρkyt−k + η
(k)
t , (4)

where c = µ(1 − ρk) and t = k + 1, k + 2, . . . , T . Regression (4) allows consistent estimation of c and ρk

because

E
(
η
(k)
t

)
= 0, E

(
yt−kη

(k)
t

)
= 0.

These conditions are easy to establish as follows. Taking the mean of both sides of (4) gives

E (yt) = c+ ρkE (yt−k) + E
(
η
(k)
t

)
.

Replacing E (yt) and E (yt−k) with µ, and using c = µ(1− ρk) gives

µ = µ(1− ρk) + ρkµ+ E
(
η
(k)
t

)
= µ+ E

(
η
(k)
t

)
,

in which case it follows that E
(
η
(k)
t

)
= 0. To show that E

(
yt−kη

(k)
t

)
= 0, calculate cov (yt−k, yt) giving

cov (yt−k, yt) = cov
(
yt−k, c+ ρkyt−k + η

(k)
t

)
= ρkcov (yt−k, yt−k) + cov

(
yt−k, η

(k)
t

)
,

or equivalently

γk = ρkγ0 + cov
(
yt−k, η

(k)
t

)
=

γk
γ0

γ0 + cov
(
yt−k, η

(k)
t

)
= γk + cov

(
yt−k, η

(k)
t

)
.
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It then directly follows that cov
(
yt−k, η

(k)
t

)
= 0. Because E

(
η
(k)
t

)
= 0, it must also be the case that

E
(
yt−kη

(k)
t

)
= 0.

Except in certain special cases, η
(k)
t will have serial correlation. By construction η

(k)
t is given by

η
(k)
t = yt − c− ρkyt−k = (yt − µ)− ρk (yt−k − µ) . (5)

Suppose yt is a finite order autoregressive moving average process (ARMA(p, q)) given by

ϕ(L) (yt − µ) = θ(L)ϵt,

where ϕ(L) = 1− ϕ1L− ϕ2L
2 − . . .− ϕpL

p, θ(L) = 1 + θ1L+ θ2L
2 + . . .+ θpL

q and L is the lag operator.

Applying the ϕ(L) lag polynomial to both sides of (5) gives

ϕ(L)η
(k)
t = ϕ(L) (yt − µ)− ϕ(L)ρk (yt−k − µ) = ϕ(L) (yt − µ)− ρkϕ(L)L

k (yt − µ)

= ϕ(L) (yt − µ)− ρkL
kϕ(L) (yt − µ) = θ(L)ϵt − ρkL

kθ(L)ϵt

=
(
1− ρkL

k
)
θ(L)ϵt. (6)

We see from (6) that η
(k)
t is an ARMA(p, q + k) process.

Suppose that yt in uncorrelated. Then p = q = 0 and ρk = 0, and it follows that (6) simplifies

to η
(k)
t = ϵt in which case η

(k)
t is uncorrelated. Whether or not yt−kη

(k)
t has serial correlation is more

complicated and depends on k, the serial correlation in yt, and whether ϵt has dependence in higher order

moments. Cases where yt−kη
(k)
t has no serial correlation should be viewed as exceptions, and inference

based on estimation of (4) should be made robust to serial correlation (and conditional heteroskedasticity).

It is convenient to rewrite the estimation equation (4) as

yt = x′
t−kβ+η

(k)
t (7)

where xt−k =
[
1 yt−k

]′
and β =

[
c ρk

]′
. The ordinary least squares (OLS) estimator of β from (7)

is given by the usual formula

β̃ =

[
c̃
ρ̃k

]
=

(
T∑

t=k+1

xt−kx
′
t−k

)−1 T∑
t=k+1

xt−kyt.
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Using the Frisch-Waugh-Lovell Theorem, ρ̃k can be equivalently expressed as

ρ̃k =

∑T
t=k+1

(
yt−k − ȳ{1,T−k}

) (
yt − ȳ{k+1,T}

)∑T
t=k+1

(
yt−k − ȳ{1,T−k}

)2 ,

where

ȳ{1,T−k} =
1

T − k

T−k∑
t=1

yt, ȳ{k+1,T} =
1

T − k

T∑
t=k+1

yt.

Define the 2× 1 vector, v
(k)
t , as

v
(k)
t = xt−kη

(k)
t =

[
η
(k)
t

yt−kη
(k)
t

]
,

and its partial sum process

S
(k)
[rT ] =

[rT ]∑
t=k+1

v
(k)
t ,

where [rT ] is the integer part of rT with r ∈ [0, 1]. Using standard calculations,

√
T
(
β̃ − β

)
=

[ √
T (c̃− c)√

T (ρ̃k − ρk)

]
=

(
T−1

T∑
t=k+1

xt−kx
′
t−k

)−1

T−1/2
T∑

t=k+1

xt−kη
(k)
t

=

(
T−1

T∑
t=k+1

xt−kx
′
t−k

)−1

T−1/2
T∑

t=k+1

v
(k)
t =

(
T−1

T∑
t=k+1

xt−kx
′
t−k

)−1

T−1/2S
(k)
T .

The asymptotic variance of β̃ depends on the probability limit of T−1
∑T

t=k+1 xt−kx
′
t−k and the long run

variance of v
(k)
t which we denote by

Ω(k) = Γ
(k)
0 +

∞∑
j=1

(
Γ
(k)
j + Γ

(k)′
j

)
,

where Γ
(k)
j = E(v

(k)
t v

(k)′
t−j).

The following two assumptions are sufficient to obtain an asymptotic normality result for
√
T
(
β̃ − β

)
.

We use the symbol ⇒ to denote weak convergence in distribution.

Assumption 1 T−1/2
∑[rT ]

t=k+1 v
(k)
t = T−1/2S

(k)
[rT ] ⇒ Λ(k)W2(r), where Λ(k) is the matrix square root of

Ω(k), i.e. Ω(k) = Λ(k)Λ(k)′, r ∈ [0, 1], and W2(r) is a 2 × 1 vector of independent Wiener processes

(W2(r) ∼ N(0, rI2) where I2 is a 2× 2 identity matrix).
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Assumption 2 T−1
∑[rT ]

t=k+1 xt−kx
′
t−k

p→ rQ =r

[
1 µ
µ γ0 + µ2

]
, where r ∈ [0, 1].

Assumption 1 is a functional central limit theorem (FCLT) for the scaled partial sums of v
(k)
t . As-

sumption 1 is stronger than what is needed for an asymptotic normality result for
√
T
(
β̃ − β

)
but is used

to obtain fixed-smoothing results for HAR test statistics. Inference is discussed in the next section. A

primitive condition for Assumption 1 to hold is that yt is near epoch dependence (L2-NED) with sufficient

α-mixing. See Lobato (2001) for details for the case of zero autocovariance tests. Additional details on

sufficient conditions for FCLTs using NED and mixing can be found in de Jong and Davidson (2000).

Note that because i) v
(k)
t involves the product of yt−k and η

(k)
t , and ii) η

(k)
t is a filtered version of yt−k,

properties of transformations of NED processes play a role in primitive conditions sufficient for Assumption

1; see Davidson (1994). Assumption 2 holds as long as yt−k is a second order stationary process. As long

as γ0 > 0 it follows that Q−1 exists.

We can directly derive the asymptotic distribution of
√
T
(
β̃ − β

)
under Assumptions 1 and 2 as

√
T
(
β̃ − β

)
=

[ √
T (c̃− c)√

T (ρ̃k − ρk)

]
⇒ Q−1ΛW2(1) ∼ N

(
0,Q−1Ω(k)Q−1

)
≡ N(0,V(k)).

The asymptotic variance of ρ̃k is V
(k)
22 , which is the (2,2) element of V(k). Straightforward calculations

can be used to show that V
(k)
22 is the same as the asymptotic variance for ρ̂k obtained by Romano and

Thombs (1996) (see their equation (6)). Therefore, ρ̃k is asymptotically equivalent to ρ̂k. The advantage

of using ρ̃k via the regression (4) is that inference about ρk can be carried out using well known estimators

for V(k) that are simple to implement in practice.

The asymptotic variance, V(k), is estimated as follows. The natural estimator of Q is given by

Q̃ = (T − k)−1
T∑

t=k+1

xt−kx
′
t−k.

Because the middle matrix of V(k) is the long-run variance-covariance matrix of v
(k)
t , we can use a non-
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parametric kernel estimator of the form

Ω̃(k) = Γ̃
(k)
0 +

T−k−1∑
j=1

k

(
j

M

)(
Γ̃
(k)
j + Γ̃

(k)′
j

)
,

Γ̃
(k)
j = (T − k)−1

T∑
t=k+j+1

ṽ
(k)
t ṽ

(k)′
t−j ,

where

ṽ
(k)
t = xt−kη̃

(k)
t , η̃

(k)
t = yt − x′

t−kβ̃ = yt − c̃− ρ̃kyt−k, (8)

k(x) is a kernel function, and M is a truncation lag or bandwidth. Ω̃(k) is the usual kernel HAR long run

variance estimator using OLS residuals, η̃
(k)
t . This leads to an estimator of V(k) given by

Ṽ(k) = Q̃−1Ω̃(k)Q̃−1.

We also consider a variant of Ω̃(k) that imposes the null hypothesis being tested about ρk. Suppose we

are interested in testing the null hypothesis

H0 : ρk = a,

where a is a given number in the (−1, 1) range. Define the null-imposed residuals for (4) as

η̃
(k)∗
t = yt −

(
ȳ{k+1,T} − aȳ{1,T−k}

)
− ayt−k =

(
yt − ȳ{k+1,T}

)
− a

(
yt−k − ȳ{1,T−k}

)
The null-imposed kernel estimator of Ω(k) uses ṽ

(k)∗
t = xt−kη̃

(k)∗
t − 1

T−k

∑T
s=k+1 xs−kη̃

(k)∗
s in place of ṽ

(k)
t

and is given by

Ω̃(k)∗ = Γ̃
(k)∗
0 +

T−k−1∑
j=1

k

(
j

M

)(
Γ̃
(k)∗
j + Γ̃

(k)∗′
j

)
,

Γ̃
(k)∗
j = (T − k)−1

T∑
t=k+j+1

ṽ
(k)∗
t ṽ

(k)∗′
t−j .

Notice that ṽ
(k)∗
t is the demeaned version of xt−kη̃

(k)∗
t . This simple demeaning was found to be important

for power by Lazarus et al. (2018) and Vogelsang (2018) when imposing the null on the variance estimator.

The null-imposed estimator of V(k) is given by

Ṽ(k)∗ = Q̃−1Ω̃(k)∗Q̃−1.
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Lastly, there is one thing to point out about the bandwidth M . In practice data dependent methods

are often used to choose M . Those formulas are functions of the proxy used for v
(k)
t when estimating Ω(k).

For Ω̃(k) data dependent bandwidths are functions of ṽ
(k)
t . For Ω̃(k)∗ data dependent bandwidths would

typically be functions of ṽ
(k)∗
t and would depend on a through η̃

(k)∗
t . Having the bandwidth depend on the

null value of ρk complicates the computation of confidence intervals. Things are much simpler when Ω̃(k)∗

uses the same data dependent bandwidth as Ω̃(k). Details are provided in Section 3.3.

3.2 Inference about ρk

In this section we focus on simple tests of the autocorrelation for a given lag, k. We propose HAR t-tests

using the variance estimators Ṽ(k) and Ṽ∗(k) and an additional variant of those estimators. Our tests are

valid for covariance stationary yt driven by weak white noise innovations. The case of i.i.d. innovations is

automatically handled.

For a given lag value, k, suppose we want to test the simple hypothesis

H0 : ρk = a,

where, because ρk is a correlation parameter, a is a given value in the range (−1, 1). The test could be

two-sided or one-sided using the appropriate rejection rule. We analyze the following two t-statistics:

t̃(k) =
(ρ̃k − a)√

1
T−k Ṽ

(k)
22

, t̃(k)∗ =
(ρ̃k − a)√

1
T−k Ṽ

(k)∗
22

(9)

where Ṽ
(k)
22 and Ṽ

(k)∗
22 are the (2,2) elements of the respective variance matrix estimators.

Rather than seek sufficient conditions under which Ṽ(k) and Ṽ(k)∗ are consistent estimators, we adopt

the fixed-smoothing asymptotic approach (often called fixed-b asymptotics in the context of kernel variance

estimators). We do this to generate reference distributions for t̃(k) and t̃(k)∗ that depend on the choice

of kernel and bandwidth and capture, to some extent, the impact of the sampling distribution of the

variance estimators on the t-statistics. As has been documented in the time series econometrics literature

(Kiefer and Vogelsang (2005), Sun, Phillips and Jin (2008), Gonçalves and Vogelsang (2011), Zhang and

Shao (2013), Lazarus et al. (2018) and Lazarus, Lewis and Stock (2021)), more accurate inference is
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obtained using critical values from fixed-b reference distributions. Fixed-b asymptotic results are derived

using an asymptotic nesting where the bandwidth to sample size ratio, b = M/T ∈ (0, 1], is held fixed as

T → ∞.

The following Theorem gives the fixed-b limits of the kernel variance estimators under Assumptions 1

and 2.

Theorem 1 Let M = bT where b ∈ (0, 1] is fixed. Under Assumptions 1 and 2, as T → ∞, the fixed-b

limits of Ω̃(k), and Ω̃(k)∗are given by

Ω̃(k) ⇒ Λ(k)P̃2(b)Λ
(k)′, Ω̃(k)∗ ⇒ Λ(k)P̃2(b)Λ

(k)′,

where P̃2(b) is a 2 × 2 stochastic matrix that is a function of the 2 × 1 vector of Brownian bridges,

W̃2(r) = W2(r)− rW2(1) and the form of P̃2(b) depends on k(x).

Notice that the fixed-b limits of Ω̃(k) and Ω̃(k)∗ are the same1. Furthermore, the limits are the same those

obtained by Kiefer and Vogelsang (2005) in stationary time series regressions. Kiefer and Vogelsang (2005)

provide details on how the form of P̃2(b) depends on the shape of the kernel. In our simulations we use

the Parzen kernel

k(x) =


1− 6x2 + 6|x|3 for |x| ≤ 1

2
2(1− |x|)3 for 1

2 ≤ |x| ≤ 1
0 for |x| > 1,

giving

P̃2(b) = −
∫∫

|r−s|<b

1

b2
k′′
(
r − s

b

)
W̃2(r)W̃2(r)

′drds,

where k′′(x) is the second derivative of k(x).

Using Theorem 1, the fixed-b limits of the t-statistics immediately follow from arguments in Kiefer and

Vogelsang (2005) and are given by

t̃(k) ⇒ W1(1)√
P̃1(b)

, t̃(k)∗ ⇒ W1(1)√
P̃1(b)

,

1It was first pointed out by Lazarus et al. (2018) that demeaning ṽ
(k)∗
t gives the same fixed-b limit for the null-imposed

long run variance estimator as for the null-not-imposed long run variance estimator.
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where P̃1(b) is a scalar version of P̃2(b) defined in terms of the scalar standard Wiener process W1(r)

in place of W2(r). The fixed-b limiting distributions are nonstandard but the critical values are easily

tabulated using simulation methods. The following formula can be used to compute right tail fixed-b

critical values:

cvα/2(b) = zα/2 + λ1(b · zα/2) + λ2(b · z2α/2) + λ3(b · z3α/2) + λ4(b
2 · zα/2) + λ5(b

2 · z2α/2)

+ λ6(b
2 · z3α/2) + λ7(b

3 · zα/2) + λ8(b
3 · z2α/2) + λ9(b

3 · z3α/2),

where zα/2 is the right tail critical value from a standard normal distribution and the λ coefficients depend

on the kernel. Left tail critical values follow by symmetry around zero.2 Notice that the critical values

reduce to the N(0, 1) distribution as b → 0. This follows from the result, shown by Kiefer and Vogelsang

(2005), that p limb→0 P̃1(b) = 1. Table 1 gives the λ coefficients for the Parzen kernel.

There are other methods for estimating long run variances. An alternative to the kernel approach is

the orthonormal series (OS) approach of Müller (2007) and Sun (2013) which has been applied to tests

of zero autocorrelation tests by Wang and Sun (2020). The OS long run variance estimator uses a finite

set of orthonormal functions Φℓ(·), ℓ = 1, 2, ...,K with the following properties (Assumption 3.1.(b) of

Sun (2013)):

Assumption 3 For ℓ = 1, 2, . . . ,K, the basis functions Φℓ(·) are continuously differentiable and orthonor-

mal in L2[0, 1] and satisfy
∫ 1
0 Φℓ(x)dx = 0.

Define Λ̃ℓ =
1√
T−k

∑T
t=k+1Φℓ

(
t
T

)
ṽ
(k)
t and Λ̃∗

ℓ =
1√
T−k

∑T
t=k+1Φℓ

(
t
T

)
ṽ
(k)∗
t . The null-not-imposed and

the null-imposed OS long run variance estimators of Ω(k) are given by

Ω̃
(k)
OS =

1

K

K∑
ℓ=1

Λ̃ℓΛ̃
′
ℓ, Ω̃

(k)∗
OS =

1

K

K∑
ℓ=1

Λ̃∗
ℓΛ̃

∗′
ℓ

giving the variance estimators

Ṽ
(k)
OS = Q̃−1Ω̃

(k)
OSQ̃

−1, Ṽ
(k)∗
OS = Q̃−1Ω̃

(k)∗
OS Q̃−1.

2Kiefer and Vogelsang (2005) show that W1(1), which is distributed N(0, 1), is independent of P̃1(b) in which case

W1(1)/

√
P̃1(b) has a mixture normal distribution and therefore has a density symmetric around zero.
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The corresponding t-statistics are given by

t̃
(k)
OS =

(ρ̃k − a)√
1

T−k Ṽ
(k)
OS,22

, t̃
(k)∗
OS =

(ρ̃k − a)√
1

T−k Ṽ
(k)∗
OS,22

.

Following Sun (2013), we use asymptotic limits for t̃
(k)
OS and t̃

(k)∗
OS where K is held fixed as T → ∞. This

is another example of fixed-smoothing asymptotics, called fixed-K asymptotics, that generates reference

distributions that, in this case, capture the number of orthonormal series and the impact, to some extent,

of the sampling distribution of the variance estimators on the t-statistics. Our assumptions allow direct

application of results in Sun (2013) giving

t̃
(k)
OS ⇒ tK , t̃

(k)∗
OS ⇒ tK ,

where tK is a standard t-distribution with K degrees of freedom. A nice feature of the OS approach is

that the fixed-K limit is a well known distribution and critical values are easily calculated using standard

statistical software. For a given set of orthonormal series, the value K needs to be chosen in practice. As

in the kernel variance estimator case, we use data dependent methods based on ṽ
(k)
t , the null-not-imposed

proxy for v
(k)
t , for both t̃

(k)
OS and t̃

(k)∗
OS .

3.3 Computation of Confidence Intervals

When the null is not imposed on the variance estimator, a (1 − α)% two-tail confidence interval can be

computed in the usual way as

ρ̃k ± cvα/2 ·
√

1

T − k
Ṽ

(k)
22 ,

where cvα/2 is the critical value taken from the relevant reference distribution (standard normal or fixed-b).

In contrast, when the null is imposed on the variance estimator, computation of confidence intervals is more

complicated because the variance estimator depends on the null value of ρk. Fortunately, the end points of

the confidence interval can be computed using the roots of a second order polynomial. The calculation is

very similar to the confidence intervals obtained by Vogelsang and Nawaz (2017) for trend ratio parameters.
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Recall the formula for the null-imposed t-statistic given by (9). A two tailed (1 − α)% confidence

interval is the collection of values of a such that the null hypothesis is not rejected using the inequality∣∣∣∣∣∣ (ρ̃k − a)√
1

T−k Ṽ
(k)∗
22

∣∣∣∣∣∣ ≤ cvα/2.

What complicates the calculation is that Ṽ
(k)∗
22 depends on a as we now show.

It is convenient to write Ṽ
(k)∗
22 in terms of quantities from the estimating equation (4) with the intercept

projected out using the Frisch-Waugh-Lovell Theorem. Let ÿt and ÿt−k denote demeaned values where

ÿt = yt − ȳ{k+1,T} and ÿt−k = yt−k − ȳ{1,T−k}. Then ρ̃k can be written as

ρ̃k =

∑T
t=k+1 ÿt−kÿt∑T
t=k+1 ÿ

2
t−k

,

and η̃
(k)
t can be written as

η̃
(k)
t = ÿt − aÿt−k.

Define

v̈
(k)∗
t = ÿt−k(ÿt − aÿt−k) = ÿt−kÿt − aÿ2t−k.

Then we rewrite Ṽ
(k)∗
22 equivalently as

Ṽ
(k)∗
22 = Q̈−1Ω̈(k)∗Q̈−1,

where Q̈ = 1
T−k

∑T
t=k+1 ÿ

2
t−k and Ω̈(k)∗ is the kernel long run variance estimator computed using the scalar

process v̈
(k)∗
t . It is well known in the literature that kernel long run variance estimators can be equivalently

written as a quadratic form. For Ω̈(k)∗ the quadratic form is

Ω̈(k)∗ = (T − k)−1
T∑

t=k+1

T∑
s=k+1

v̈
(k)∗
t ktsv̈

(k)∗
s

= (T − k)−1
T∑

t=k+1

T∑
s=k+1

(ÿt−kÿt − aÿ2t−k)kts(ÿs−kÿs − aÿ2s−k),

where kts = k
(
|t−s|
M

)
. Rearranging Ω̈(k)∗ gives

Ω̈(k)∗ = Ω̈
(k)∗
11 − 2aΩ̈

(k)∗
12 + a2Ω̈

(k)∗
22 , (10)
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where

Ω̈
(k)∗
11 = (T − k)−1

T∑
t=k+1

T∑
s=k+1

ÿt−kÿtktsÿs−kÿs,

Ω̈
(k)∗
12 = (T − k)−1

T∑
t=k+1

T∑
s=k+1

ÿt−kÿtktsÿ
2
s−k,

Ω̈
(k)∗
22 = (T − k)−1

T∑
t=k+1

T∑
s=k+1

ÿ2t−kktsÿ
2
s−k.

Using these variance formulas, we obtain an equivalent formula for t̃(k)∗ given by

t̃(k)∗ =
(ρ̃k − a)√

1
T−k Q̈

−2
(
Ω̈
(k)∗
11 − 2aΩ̈

(k)∗
12 + a2Ω̈

(k)∗
22

) .
The confidence interval for ρk is the values of a such that∣∣∣∣∣∣∣∣

(ρ̃k − a)√
1

T−k Q̈
−2
(
Ω̈
(k)∗
11 − 2aΩ̈

(k)∗
12 + a2Ω̈

(k)∗
22

)
∣∣∣∣∣∣∣∣ ≤ cvα/2,

or equivalently  (ρ̃k − a)√
1

T−k Q̈
−1
(
Ω̈
(k)∗
11 − 2aΩ̈

(k)∗
12 + a2Ω̈

(k)∗
22

)


2

≤ cv2α/2. (11)

The inequality (11) can be rewritten as

c2a
2 + 2c1a+ c0 ≤ 0, (12)

where

c2 = 1− 1

T − k
Q̈−2Ω̈

(k)∗
22 · cv2α/2,

c1 =
1

T − k
Q̈−2Ω̈

(k)∗
12 · cv2α/2 − ρ̃k,

c0 = ρ̃2k −
1

T − k
Q̈−2Ω̈

(k)∗
11 · cv2α/2.

Notice the importance of using a bandwidth rule for M that does not depend on a. Otherwise Ω̈
(k)∗
11 , Ω̈

(k)∗
12

and Ω̈
(k)∗
22 would depend on a greatly complicating the solution to (12).
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The values of a satisfying the inequality (12) are determined by the roots of the polynomial

p(a) = c2a
2 + 2c1a+ c0.

This polynomial has a similar form to the polynomial analyzed by Vogelsang and Nawaz (2017). Let r1

and r2 be the roots of p(a) and order them r1 ≤ r2 when they are real roots. The discriminant of the

quadratic equation p(a) is given by c21 − c2c0, so the shape of the confidence interval for a depends on the

signs of c2 and c21 − c2c0.

There are four cases. Case 1 has c2 > 0 and c21−c2c0 ≥ 0 in which case the roots are real and a ∈ [r1, r2].

Case 2 has c2 > 0 and c21 − c2c0 < 0 in which case p(a) opens upward and its vertex is above zero giving

roots that are complex numbers and an empty confidence interval. Case 3 has c2 < 0 and c21 − c2c0 > 0

in which case the roots are real and a ∈ (−1, r1] ∪ [r2, 1) given that p(a) opens downward and its vertex

is above zero. Case 4 has c2 < 0 and c21 − c2c0 ≤ 0 in which case a ∈ (−1, 1). It is important to note

that Case 2 is impossible because the confidence interval cannot be empty given that it always contains

the value a = ρ̃k because in this case we have t̃(k)∗ = 0 and a non-rejection is obtained. The other cases

are possible although it is not easy to find intuition as to the likelihood of each case.

First examine the sign of c2. One can show that 1
T−k Q̈

−2Ω̈
(k)∗
22 < 1, however, cv2α/2 will be greater

than 1 for commonly used significance levels. Therefore, the sign of c2 is inconclusive. Whether or not

c2 is positive depends on the kernel, bandwidth, the significance level, and the data. As T increases,

1
T−k Q̈

−2Ω̈
(k)∗
22 converges to zero in which case it is more likely that c2 is positive. Next examine the sign of

c21 − c2c0. Algebra gives

c21 − c2c0 =
(
Ω̈
(k)∗
12 − Ω̈

(k)∗
11 Ω̈

(k)∗
22

)( 1

T − k
Q̈−2 · cv2α/2

)2

+
(
Ω̈
(k)∗
11 − 2ρ̃kΩ̈

(k)∗
12 + ρ̃2kΩ̈

(k)∗
22

)( 1

T − k
Q̈−2 · cv2α/2

)
.

We see that c21 − c2c0 is expressed as the sum of the two terms. The second term is the formula for Ω̈(k)∗

with a = ρ̃k in (10) and is scaled by a positive quantity. With appropriate choice of kernel, long run

variances like Ω̈(k)∗ are non-negative as argued by Priestley (1981) and Newey and West (1987). Therefore,

18



the second term is non-negative. However, the first term is inconclusive because Ω̈
(k)∗
12 − Ω̈

(k)∗
11 Ω̈

(k)∗
22 can be

positive or negative. Therefore, the sign of c21 − c2c0 is also inconclusive.

Confidence intervals can be computed using the orthonormal series variance estimator analogously with

Ω̈
(k)∗
11 , Ω̈

(k)∗
12 , and Ω̈

(k)∗
22 replaced, respectively, by Ω̈

(k)∗
OS,11 =

1
K

∑K
ℓ=1 Λ̈

∗
ℓ,1Λ̈

∗
ℓ,1, Ω̈

(k)∗
OS,12 =

1
K

∑K
ℓ=1 Λ̈

∗
ℓ,1Λ̈

∗
ℓ,2, and

Ω̈
(k)∗
OS,22 =

1
K

∑K
ℓ=1 Λ̈

∗
ℓ,2Λ̈

∗
ℓ,2 where Λ̈∗

ℓ,1 =
1√
T−k

∑T
t=k+1Φℓ

(
t
T

)
ÿt−kÿt and Λ̈∗

ℓ,2 =
1√
T−k

∑T
t=k+1Φℓ

(
t
T

)
ÿ2t−k.

4 Monte Carlo Simulations

In this section we study finite sample properties of the proposed t-statistics for testing

H0 : ρk = a

through extensive Monte Carlo simulations. We use 5,000 replications in all cases. We compare our t-

statistics, t̃(k), t̃(k)∗, t̃
(k)
OS and t̃

(k)∗
OS with each other and with some existing approaches. Fixed-b critical

values are used for t̃(k), t̃(k)∗ and critical values from the tK distribution (fixed-K critical values) are used

for t̃
(k)
OS and t̃

(k)∗
OS . We also provide some results for t̃(k)∗ using N(0, 1) critical values to show the value of

using fixed-b critical values. For t̃(k) we used the data dependent bandwidth, denoted by M̃ , proposed by

Sun et al. (2008) that balances size distortions and power of the tests, the ‘test-optimal-M ’. The weighting

parameter that balances type 1 and type 2 errors is set to 10. The null-imposed statistic, t̃(k)∗, also uses

M̃ so that its bandwidth does not depend on the value of the null being tested. For t̃
(k)
OS we used the data

dependent smoothing parameter, denoted by K̃, proposed by Phillips (2005) that minimizes the mean

square error of the variance estimator, the ‘MSE-optimal-K’. The null-imposed statistic, t̃
(k)∗
OS , also uses K̃

to avoid dependence on the value of the null being tested. For both M̃ and K̃ we use well known AR(1)

plug-in methods (see Andrews (1991)) that are functions of ṽ
(k)
t , the null-not-imposed proxy for v

(k)
t given

by equation (8).

Results are given for a broad set of data generating processes (DGPs) where yt follows the ARMA(1, 1)

process

yt = ϕyt−1 + ϵt + θϵt−1, (13)
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where µ = 0 without loss of generality given that we include in a intercept in the estimating equation (4).

Special cases include uncorrelated yt (ϕ = 0, θ = 0) and AR(1) (θ = 0) and MA(1) (ϕ = 0) processes.

Results are given for nine DGPs of the innovation process, ϵt, ranging from i.i.d. to cases with increasing

dependence in higher moments.

DGP 1: IID : ϵt = ut ∼ i.i.d.N(0, 1).

DGP 2: MDS : ϵt = utut−1, ut ∼ i.i.d.N(0, 1)..

DGP 3: GARCH : ϵt = htut and h2t = 0.1 + 0.09ϵ2t−1 + 0.9h2t−1, ut ∼ i.i.d.N(0, 1).

DGP 4: WN-1 : ϵt = ut + ut−1ut−2, ut ∼ i.i.d.N(0, 1).

DGP 5: WN-2: ϵt = u2tut−1, ut ∼ i.i.d.N(0, 1).

DGP 6: WN-NLMA: ϵt = ut−2ut−1(ut−2 + ut + 1), ut ∼ i.i.d.N(0, 1).

DGP 7: WN-BILIN: ϵt = ut + 0.5ut−1ϵt−2, ut ∼ i.i.d.N(0, 1).

DGP 8: WN-GAM1 : ϵt = ut + ut−1ut−2, ut = ζt − E[ζt], ζt ∼ i.i.d.Gamma(0.3, 0.4).

DGP 9: WN-GAM2 : ϵt = ut − ut−1ut−2, ut = ζt − E[ζt], ζt ∼ i.i.d.Gamma(0.3, 0.4).

DGP 1 is an i.i.d. Gaussian innovation and serves as a benchmark given that all approaches are valid for

this case. DGP 2 relaxes the i.i.d. assumption and ϵt is a martingale difference sequence (MDS) innovation

that has been studied in the literature. See Romano and Thombs (1996) and Francq and Zaköıan (2009).

DGP 3 is a GARCH(1, 1) innovation typical in financial time series. DGPs 4-9 are white noise processes

with stronger dependence than the MDS case. DGP 4 is from Hansen (2022) and ϵt follows a white noise

process that is a function of an underlying i.i.d. Gaussian process. DGP 5 is a white noise process from

Wang and Sun (2020). DGPs 6 and 7 are white noise processes from Lobato (2001). DGPs 8 and 9 build

white noise process using independent centered Gamma random variables generating some skewness in ut.
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4.1 Null Rejections for Uncorrelated Time Series

We first focus on the case where yt is uncorrelated, i.e. ρk = 0 or equivalently ϕ = 0, θ = 0 in (13). For

this case we focus on the first order autocorrelation (k = 1) and examine tests of the null hypothesis

H0 : ρ1 = 0.

We consider the (original) Bartlett formula, the generalized Bartlett formula, and White standard errors

for constructing t-statistics that we compare to our proposed t-statistics. We carry out two-tailed tests

with a nominal significance level of 0.05. The original Bartlett formula always uses vB1,1 = 1 whether or not

yt is i.i.d. For the generalized Bartlett formula, we use the formula (3) from Francq and Zaköıan (2009)

for a white noise process. White standard errors are a special case of Ω̃(k) where only the Γ̃
(k)
0 term is

used. Because testing ρ1 = 0 is a zero autocorrelation test for the lag one autocorrelation, we also include

the zero autocorrelation test of Taylor (1984) which has recently been extended by Dalla, Giraitis and

Phillips (2022). The Taylor (1984) τ̃1 t-statistic is given by

τ̃1 =

∑n
t=2 et1(∑n

t=2 e
2
t1

)1/2 , et1 = (yt − ȳ) (yt−1 − ȳ) .

Dalla et al. (2022) provide conditions under which τ̃1 is asymptotically standard normally distributed.

We also report results using the bootstrap method suggested by Romano and Thombs (1996) where the

bootstrapped version of ρ̂k is centered around ρ̂k but is not standardized (see their equation (11) on page

594). We report results using the moving block bootstrap with block length equal to
√
T . For the case

where the DGP for ϵt is i.i.d. we also report results using block length equal to 1 (the i.i.d. bootstrap). We

obtained results using the stationary bootstrap and the circular bootstrap but exclude them from reporting

because they give similar results and patterns as the moving block bootstrap. We also obtained results

using subsampling but found those results less accurate than the bootstrap and those results are omitted.

Figures 1.1 through 1.9 plot empirical null rejection probabilities for each of the nine cases for ϵt.

Results are given for sample sizes T = 100, 200, 500 and 2000. The labels Fixed-b (SPJ) and Fixed-b-H0

(SPJ) correspond to t̃(1) and t̃(1)∗ respectively using fixed-b critical values. N(0, 1)-H0 (SPJ) corresponds
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to t̃(1)∗ using N(0, 1) critical values. The (SPJ) label indicates that the same data dependent bandwidth,

M̃ , was used for all three tests. The labels OS (MSE) and OS-H0 (MSE) correspond to t̃
(1)
OS and t̃

(1)∗
OS using

the same K̃ smoothing parameter.

To understand many of the patterns in Figures 1.1 - 1.9, it is useful to keep in mind that v
(1)
t =

ϵt−1ϵt when yt is uncorrelated. For the IID, MDS and GARCH DGPs, v
(1)
t is obviously uncorrelated.

While not as obvious, v
(1)
t is uncorrelated for the white noise processes WN-1, WN-2, WN-NLMA and

WN-BILIN. In contrast, v
(1)
t is positively autocorrelated for the WN-GAM1 DGP because one can show

that E
(
v
(1)
t v

(1)
t−1

)
= E

(
u3t
)
E(u2t ) > 0 given that E

(
u3t
)
> 0 for the Gamma parameters we use. The

sign change in the WN-GAM2 DGP generates negative autocorrelation3 in v
(1)
t because E

(
v
(1)
t v

(1)
t−1

)
=

−E
(
u3t
)
E(u2t ) < 0.

Figure 1.1 depicts null rejection probabilities for the IID DGP (yt = ϵt is i.i.d.). There are slight

over-rejections for t̃(1) (null-not-imposed kernel HAR statistic) with fixed-b critical values (red squares

dash-dotted line) for T = 100 because for this method there is variability in ṽ
(1)
t from estimating ρ1 that

matters when T is relatively small. Imposing the null for the kernel HAR approach reduces over-rejections

as illustrated by t̃(1)∗ using fixed-b critical values (purple up-arrow dotted line). Using normal critical

values for t̃(1)∗ (gold circle dash-dotted line) shows some over-rejections and illustrates the benefits of using

fixed-b critical values. The null rejections of t̃
(1)
OS (null-not-imposed, orange x’s solid line) and t̃

(1)∗
OS (null-

imposed, light green down-arrow dashed line) are similar to the rejections of t̃(1) and t̃(1)∗. Rejections are

close to 0.05 for all traditional methods (Bartlett formula (blue dot solid lines ‘Bartlett(IID)’), generalized

Bartlett (light blue star dashed line ‘GB-WN’), Taylor (yellow rhombus dotted line ‘Taylor’) and White

standard errors (green right-arrow dotted line ‘White’)). It is surprising to see that the i.i.d. bootstrap

(black down-arrow dashed line ‘IID-bootstrap’) does not work for the i.i.d. DGP. Null rejections for the

i.i.d. bootstrap are about 0.33 even when T increases to 2000. Interestingly, the moving block bootstrap

(black circle dotted line ‘MBB’) performs better than the i.i.d. bootstrap even though the data has no

3Notice that the WN-1 and WN-GAM1,WN-GAM2 DGPs take the same form. The reason that v
(1)
t is uncorrelated for

WN-1 is because ut is normally distributed. Normality implies that E(u3
t ) = 0 and it follows that E

(
v
(1)
t v

(1)
t−1

)
= 0.
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dependence. Even so, rejections with the moving block bootstrap range from 0.15 with T = 100 to about

0.07 with T = 2000 whereas all non-bootstrap tests have rejections close to 0.05 when T = 100 and very

close to 0.05 when T = 2000.

Figures 1.2-1.7 relax the i.i.d. assumption and give results for yt being an MDS, GARCH and the

various white noise series that satisfy, with the exception of the original Bartlett variance, the conditions

of the traditional approaches. We see similar patterns as in the i.i.d. case, however more size distortions

occur for t̃(1) and t̃
(1)
OS (null-not-imposed) for smaller sample sizes. In contrast, t̃(1)∗ and t̃

(1)∗
OS (null-imposed)

have rejections close to 0.05. This indicates potential size improvements by imposing the null, consistent

with the findings in Lazarus et al. (2018) and Vogelsang (2018) in stationary regression settings. The

traditional Bartlett formula shows over-rejections which is expected with the i.i.d. assumption violated.

The moving block bootstrap continues to have substantial over-rejections especially for small sample sizes

for all DGPs. The other traditional methods work reasonably well as expected given that yt satisfies the

required assumptions for those methods.

Figures 1.8 and 1.9 give results for the white noise case with Gamma distributed innovations. For the

WN-GAM1 DGP (Figure 1.8) all tests show some over-rejections with t̃(1)∗ and t̃
(1)∗
OS (null-imposed) having

rejections closest to 0.05. The null-not-imposed tests, t̃(1) and t̃
(1)
OS , have substantial over-rejections for small

T but rejections approach 0.05 as T increases. All of the traditional methods have over-rejections even when

T is large because this DGP violates the assumptions for those methods. In particular Taylor and White

are designed for the case where v
(1)
t is uncorrelated and that fails here. The generalized Bartlett formula

uses a symmetry assumption for cross fourth moments of ϵt that is violated in the Gamma distribution

case. Figure 1.9 shows that if we flip the sign on ut−1ut−2, rejections change dramatically with all tests

under-rejecting. Under-rejections make sense because flipping the sign generates negative autocorrelation

in v
(1)
t for the WN-GAM2 DGP. The traditional methods can have very low rejections close to zero. As

T increases the rejections using the estimating equation approach tends towards 0.05 but the traditional

methods do not. The moving block bootstrap continues to over-reject and does not perform as well as

non-bootstrap methods.
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It is a common misconception that yt = ϵt being uncorrelated implies that v
(1)
t = ϵt−1ϵt will be

uncorrelated. However, because it is possible for ϵt−1ϵt to have serial correlation when ϵt is uncorrelated,

the generalized-Bartlett, White, and Taylor approaches are not necessarily valid when yt is uncorrelated.

One benefit of the estimating equation approach is that it automatically handles white noise innovations

including the case where v
(1)
t has serial correlation.

Finally, our simulation results for the bootstrap are puzzling especially in the i.i.d. case given the

relatively simple form of ρ̂1. An analytical analysis of why the bootstrap is not performing as expected is

part of an ongoing research project that we will report in a follow-up paper.

4.2 Null Rejections for Serially Correlated Time Series

Next we focus on cases of serially correlated time series where ρk ̸= 0. We continue to focus on tests of the

first order autocorrelation (k = 1) and consider the null hypothesis

H0 : ρ1 = ρ
(0)
1 ,

where ρ
(0)
1 is the true value of ρ1, and ρ

(0)
1 depends on the serial correlation structure of yt. We exclude the

Taylor and White approaches because they are no longer valid when ρk ̸= 0. We do not report bootstrap

results because of the bootstrap’s relatively poor performance with uncorrelated data.

Two versions of the generalized Bartlett approach are included. One assumes that yt is white noise

(GB-WN) and the other assumes yt follows an MA(1) process (GB-MA)4. The formula for GB-MA is given

by

vB
∗

1,1 =
γϵ2(0)

[γϵ(0)]
2

[
ρϵ2(1)(1− 4ρ1 + 4ρ41) + ρϵ2(2)ρ

2
1

]
.

We derived this formula using the general expression in Francq and Zaköıan (2009). The corresponding

estimator is obtained by plugging in estimators of the parameters. We estimate ρ1 using (2). We estimate

γϵ(0) using the sample variance of ϵ̂t where ϵ̂t are the residuals from fitting an MA(1) model to yt− y. The

parameters γϵ2(0), ρϵ2(1), ρϵ2(2) are estimated using sample analogs computed with ϵ̂2t .

4We do not implement versions of the generalized Bartlett approach designed for the case when yt has the AR(1) component
because the form of the generalized Bartlett variance formula for the AR(1) case is complicated and is very difficult to
implement.
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Results are given for the MA(1) case in Figures 2-6 and the AR(1) case in Figures 6-11. Results for

ARMA(1,1) specifications are similar and are omitted. We exclude DGPs WN-2,WN-NLMA and WN-

BILIN for ϵt given the similarity in patterns to WN-1. We also exclude WN-GAM2. We continue to

use two-tailed tests with 0.05 nominal level. Each figure has four panels corresponding to the sample

sizes T = 100, 200, 500, and 1000. The x-axis indicates the value of either θ or ϕ. For the MA(1) case,

ρ
(0)
1 = θ/

(
1 + θ2

)
and for the AR(1) case ρ

(0)
1 = ϕ.

Figure 2 gives results for MA(1) case with ϵt i.i.d. Not surprisingly, all approaches work reasonably

well except for GB-WN which under-rejects unless θ = 0. This is expected given that GB-WN is invalid

except when θ = 0. Figure 3 gives MA(1) results where ϵt follows the MDS DGP. The traditional Bartlett

approach (MA(1)) over-rejects because ϵt is not i.i.d. For T = 100, GB-MA (green star dashed line)

tends to over-reject. Rejections become closer to 0.05 as T increases. The small sample distortions are

likely caused by the need to estimate θ. Similar to MA(1) with ϵt i.i.d, GB-WN continues to under-reject.

The null-imposed kernel HAR test, t̃(1)∗, works well whether normal critical values (N(0,1)-H0) or fixed-b

critical values (Fixed-b-H0) are used. The null-imposed orthonormal series test, t̃
(1)∗
OS (OS-H0) has similar

performance to t̃(1)∗. Not imposing the null leads to over-rejections for both t̃(1) (Fixed-b) and t̃
(1)
OS (OS)

when T is relatively small. This again illustrates that more reliable inference under the null is obtained by

imposing the null on the kernel and orthonormal series variance estimators. When ϵt is a GARCH process,

Figure 4 shows that all methods works well except for the traditional Bartlett and GB-WN as one would

expect. Figure 5 gives results for the case of ϵt being white noise (WN-1 DGP) and we see that patterns

are similar to the MDS case. In contrast, patterns are clearly different when ϵt is the white noise driven

by Gamma errors (WN-GAM1 DGP) as seen in Figure 6. None of the Bartlett approaches are valid in

this case and rejections are either well above or well below 0.05. The null-imposed HAR approaches, t̃(1)∗

and t̃
(1)∗
OS , perform best especially with fixed-b critical values. Not imposing the null can lead to nontrivial

over-rejections. While rejections of the HAR tests get closer to 0.05 with larger sample sizes, there are still

some size distortions even with T = 2000. Our conjecture is that the CLT and FCLT ‘kick in’ more slowly

as T increases in the Gamma distribution case.
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We now turn to Figures 7-11 for the AR(1) results. Keep in mind that both GB-MA and GB-WN use

formulas based on a misspecified model and are not expected to perform well. Figure 7 gives results for ϵt

i.i.d. We can see that the misspecified GB approaches have size distortions that persist with larger T . The

Bartlett (AR(1)) and HAR tests perform reasonably well with small T with some slight over-rejections.

Rejections are close to 0.05 with T = 2000. Figures 8, 9 and 10 give AR(1) results for ϵt MDS, GARCH

and WN-1 respectively. When the errors are MDS and GARCH (Figures 8 and 9), we can see that the

null-imposed HAR tests t̃(1)∗ (Fixed-b-H0) and t̃
(1)∗
OS (OS-H0) perform well with null rejections reasonably

close to 0.05. When ϵt is white noise (Figures 10 and 11), all approaches exhibit over-rejections when ϕ > 0

especially as ϕ approaches 1. Increasing T improves the performance of the HAR approaches.

4.3 Power Analysis

In this subsection we study finite sample power of the test statistics. We use size-adjusted power to account

for the size distortions of the tests. This allows power comparisons with the same null rejections. Because

we use size-adjusted finite sample critical values, there is no need to distinguish between using N(0, 1) and

fixed-b critical values for t̃(1)∗. In the power figures we label t̃(1) as ‘Kernel’ and t̃(1)∗ as ‘Kernel-H0’. We

report three sets of power results for the case where yt is AR(1) and ϵt is IID (DGP 1), WN-NLMA (DGP

6) and WN-GAM1 (DGP 8). The null hypothesis in all cases is H0 : ρ1 = 0 with the alternative given by

H1 : ρ1 = ϕ. We use a 0.1 grid for ϕ on the interval [−0.5, 0.5]. Results are reported for T = 100, 200, 300,

and 500.

Figure 12 gives results for ϵt IID. Size-adjusted power is essentially the same across all tests. Figure

13 gives results for ϵt WN-NLMA. Size-adjusted power is similar across tests although one can see that

the null-imposed HAR tests have slightly lower power for negative values of ρ1. This is more apparent in

Figure 14 where results for ϵt WN-GAM1 are given. With T = 100, power is lower for the null-imposed

tests for negative values of ρ1. Interestingly, these power differences disappear when T = 500. There are

also some asymmetries in power around ρ1 in the white noise cases, especially WN-GAM1, that do not

occur with ϵt IID.
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While the null-imposed HAR tests can have lower power than the null-not-imposed HAR tests, the

power differences are relatively small and disappear as T increases. Given the superior null rejections of

the null-imposed-tests and their respectable power, we can recommended them in practice.

4.4 Null Rejection Probabilities Across Lags

The finite sample results to this point have focused on the case of k = 1. In this subsection we provide

results for other values of k. We report results for the AR(1) case for ϕ = 0 and ϕ = 0.5 with k ranging

from 1 to 10. The null hypothesis is

H0 : ρk = ϕk,

given the AR(1) structure. Results are reported for the HAR tests and the recursive MA approach used by

the software Stata given by equation (1). We report results for T = 50, 100, 250 and 1000. We continue to

focus on two-sided tests with a nominal level of 0.05. Results for ϕ = 0 are given in Figures 15-19 for ϵt IID,

MDS, GARCH, WN-1 and WN-GAM1. For ϵt IID (Figure 15) the HAR tests, especially the null-imposed

versions, work well for all k with rejections very close to 0.05 as T increases. The Stata procedure (blue

dot solid line labeled ‘Software’) works well with large T but under-rejects for small T and larger values of

k. This makes sense because the estimated variance used by Stata increases mechanically as k increases.

Figure 16 shows that when ϵt is an MDS, the null-imposed HAR tests continue to perform well but the

null-not-imposed HAR tests have some over-rejections with small values of T . The Stata procedure relies

on the i.i.d. assumption for ϵt and breaks down for k = 1. In the case of GARCH innovations, Figure

17 shows that the HAR tests perform well, again imposing the null works best. The Stata procedure

completely breaks down. When ϵt is white noise, Figures 18 and 19 show that the null-imposed HAR tests

continue to work well for all k including the T = 50 case. Not imposing the null results in HAR tests

that can have substantial over-rejections for small values of k especially when T is not large. The Stata

procedure breaks down for k = 1, 2 but works reasonably well for k ≥ 3. These results show that when

yt is uncorrelated, the Stata procedure only works when yt is i.i.d. In contrast, the HAR tests with the

null-imposed work quite well including the case of yt being white noise.
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The results with ϕ = 0.5 are given in Figures 20-24 for the same cases for ϵt. The Stata procedure is

not valid for any of these cases given the AR(1) structure. The null-imposed HAR tests work well overall

but do have some relatively minor size distortions when T = 50. The null-not-imposed HAR tests can

have substantial over-rejections with small values of T and small values of k. An interesting contrast can

also be seen in these figures for t̃(k)∗ and t̃
(k)∗
OS . When these two tests have some over-rejections, they are

less pronounced for t̃(k)∗ than for t̃
(k)∗
OS . This is not because t̃(k)∗ uses a kernel and t̃

(k)∗
OS and uses series to

estimate the long run variance. The reason is that the MSE criteria for smoothing parameters of long run

variances leads to less smoothing than the test based criteria. Less smoothing (e.g. smaller bandwidths

for kernel estimators) is well known to lead to tests with a greater tendency to over-reject in finite samples

when fixed-smoothing critical values are used (see the simulations in Kiefer and Vogelsang (2005) for the

kernel case). The reason that t̃
(k)∗
OS tends to over-reject more than t̃(k)∗ is because K̃ leads to less smoothing

than M̃ .

4.5 Shape of Confidence Intervals

In section 3.3, we showed that confidence intervals computed with the null-imposed HAR statistics can

take three forms. In this section we investigate the likelihood of the forms for some representative DGPs

from our simulation design. We provide results for confidence intervals using t̃(k)∗ with fixed-b critical

values. Results with t̃
(k)∗
OS using tK critical values are similar and are not reported. Tables 2 and 3 give

results for the AR(1) case with ϵt IID and ϵt WN-NLMA (DGP 6). These results nicely show the range of

possibilities. Results are given for T = 50, 100, 250, 500 and AR(1) values ϕ = 0, 0.25, 0.7,−0.7. We use

10,000 replications.

Tables 2 and 3 are organized as follows. For each pair of values for ϕ and T , we report the empirical

probabilities of each confidence interval type (Prob), the empirical coverage probability of the confidence

interval (ECP), and the average confidence interval length (CI) conditional on the confidence interval type

and overall. The AR-IID results in Table 2 serve as a benchmark. The first panel of the table (ϕ = 0)

gives result for when yt is i.i.d. We can see that for all sample sizes the probability of obtaining the typical
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[r1, r2] confidence interval is 1.0. As ϕ moves away from 0 and for smaller values of T , there are very small,

but non-zero, probabilities of obtaining the confidence intervals (−1, r1] ∪ [r2, 1) and (−1, 1).

Table 3 shows very different patterns from Table 2. With no autocorrelation or relatively weak auto-

correlation (ϕ = 0.25), there is about a 50% chance of shapes (−1, r1] ∪ [r2, 1) and (−1, 1) with T small.

In these cases, the empirical coverages and confidence lengths are larger than the [r1, r2] case (this is obvi-

ously true by construction when the confidence interval is (−1, 1)). As T increases or ϕ moves farther away

from zero, the probability of [r1, r2] confidence interval shape increases. As one expect, average confidence

interval lengths shrink as T increases.

These results show that for smaller sample sizes and more complex dependence in yt and its innovations,

ϵt, disjoint and possibly very wide confidence intervals can occur. While some empirical practitioners may

be bothered by disjoint or wide confidence intervals, we view these cases as providing the practitioner with

a signal that yt has potentially complex serial correlation structure with innovations that have complex

dependence in higher moments that matter for inference about the autocorrelations of yt. In other words,

disjoint or wide confidence intervals are signals of data that has limited information about autocorrelation

structure.

5 Empirical Application

The autocorrelation function is widely used as a preliminary step in analyzing financial time series. The

Bartlett formula is commonly used as part of graphical evidence of autocorrelation structure. For example,

Bollerslev and Mikkelsen (1996) provides a figure of sample autocorrelations for absolute daily returns of the

S&P 500 index with the 95% confidence bands5 implied by the Bartlett formula for i.i.d. data to illustrate

volatility clustering and its long-term dependence. Andersen, Bollerslev, Diebold and Labys (2003) provides

figures of sample autocorrelations for daily exchange rate realized volatilities before and after fractional

differencing along with the i.i.d. Bartlett confidence bands to graphically confirm evidence of long memory.

While the i.i.d. Bartlett confidence bands are routinely reported in practice, it is important to keep

5A confidence band is used to test the null hypothesis of zero autocorrelation and is not a confidence interval. An estimated
value outside the band is a rejection of the null.
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in mind the limitations of these confidence bands. First, the confidence bands are only valid if the data

is i.i.d. If the data is uncorrelated but not i.i.d. (martingale difference, white noise), then the bands are

no longer valid. Second, the bands can only be used to test the null hypothesis that the series is i.i.d.

Once it is determined that the series has dependence, the bands cannot be used to assess significance of

autocorrelations at specific lags because the bands are not generally valid when there is serial correlation.

A more informative approach is to report confidence intervals using t̃(k)∗ or t̃
(k)∗
OS allowing inference

about autocorrelations that is valid for general serial correlation structures and innovations that are not

necessarily i.i.d. As an illustration we provide some empirical results for S&P 500 index returns and absolute

returns for two sets of time periods (before Covid and during/after Covid) that have the same number

of observations (913 observations for each) but exhibit different estimated autocorrelation patterns and

confidence intervals. Figure 25 provides plots of the returns and the absolute returns for the full time span

of the observations from June 28, 2016 to September 28, 2023. Figure 26 plots estimated autocorrelations

for S&P 500 returns for daily data from June 28, 2016 to February 12, 2020 (Panel (a)) and February 13,

2020 to September 28, 2023 (Panel (b)). Red circles are the sample autocorrelations given by (2) and blue

dots are autocorrelations estimated by OLS using (4). The dashed red lines are i.i.d. Bartlett confidence

bands. The gray area is the Stata confidence bands using equation (1). The black lines with bars are 95%

confidence intervals computed using t̃(k)∗ with fixed-b critical values. The dash-dot green lines are 95%

confidence bands using t̃(k)∗ that can be used to test a given autocorrelation is zero. One can equivalently

test an autocorrelation is zero by checking that the confidence interval contains zero.

Figure 26 gives results for returns which provides information about market efficiency. Panel (a) shows

that estimated autocorrelations of returns are close to zero and, in nearly every case, not statistically

significant. If one used the Bartlett or Stata confidence bands, one would conclude there is no evidence to

reject the null that returns are uncorrelated (equity market is efficient). However, that conclusion is subject

to the caveat that the bands are only valid if the innovations are i.i.d. In contrast, the confidence intervals

using t̃(k)∗ allow more robust inference. Because nearly all the confidence intervals contain zero, we cannot

reject the null returns are uncorrelated whether or not innovations are i.i.d. or are simply uncorrelated.
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Panel (b) of Figure 26 is distinctly different and interesting because conclusions depend critically on

the method used and its assumptions. Using the Bartlett or Stata confidence bands, one would conclude

there is evidence to reject the null hypothesis that returns are uncorrelated in the Covid/Post-Covid period

given that many sample autocorrelations are outside the bands. This conclusion is only valid if innovations

are i.i.d. Furthermore, these bands cannot be used to conclude anything further about the autocorrelation

structure because the confidence bands are not confidence intervals. In contrast, the t̃(k)∗ confidence

intervals tell a different story. While the estimated autocorrelations are larger in magnitude compared to

the pre-Covid period, nearly all the confidence intervals contain zero. Therefore, using robust confidence

intervals, one cannot reject that returns are uncorrelated in the Covid/Post-Covid period. The fact that

confidence intervals are wider in this period is an indication that the innovations have potentially more

complex higher order dependence and/or GARCH effects than the pre-Covid period.

Figure 27 gives results for absolute returns which provides information about volatility clustering and

the dependence structure of volatility (Bollerslev and Mikkelsen (1996)). In Panel (a) we see positive

estimated autocorrelations with tight confidence intervals. While the estimated autocorrelations are not

large in magnitude, they persistent at long lags and are statistically significant (all confidence intervals do

not contain zero). This evidence implies volatility clustering during the pre-Covid period. Panel (b) is

an interesting contrast. While estimated autocorrelations are larger, confidence intervals are substantially

wider. Notice that we cannot reject that the first six lags have zero autocorrelation. While it may be

tempting to argue that there is stronger evidence for volatility clustering and higher persistence during the

Covid/Post-Covid period, the wide confidence intervals suggest something else may be happening in this

period that warrants further investigation. Here, if one only looked at the Bartlett or Stata confidence

bands, a potentially misleading conclusion might be reached.

6 Conclusion

This paper develops an estimating equation approach for robust confidence intervals for the autocorrelation

function of a stationary time series. Our approach is applicable to general stationary time series with
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uncorrelated innovations that can have dependence in higher order moments (innovations do not have

to be i.i.d.). Except for narrow exceptions, the asymptotic variance of estimated autocorrelations take a

sandwich form. The asymptotic variance can be directly estimated by well known HAR variance estimators

allowing t-statistics and confidence intervals to be easily constructed. We consider HAR variance estimators

that impose the null leading to more reliable inference. We provide conditions under which fixed-smoothing

critical values can be used for t-tests and confidence intervals and recommend those critical values be used

in practice.

Our extensive simulation study shows that the tests based on the null-imposed variance estimator in

conjunction with fixed-smoothing critical values leads to inference about the autocorrelation function that

works well in practice both in terms of controlling null rejection probabilities and having good power.

Our approach can be used to report generally valid confidence intervals for covariance stationary time

series under weak assumptions for the innovations. In contrast existing software packages typically report

confidence bands based on strong assumptions that can only be used to test narrow hypotheses (and are

often misused in practice). Our approach is an improvement and allows the testing of significantly broader

hypothesis about the autocorrelation function in a highly robust manner.

Our simulation results also reveal a puzzle regarding the use of the bootstrap for inference about the

autocorrelation function. For the case of uncorrelated data (including the case of i.i.d. data) we find that

the block bootstrap and related bootstrap approaches do not perform as well as expected even in the case

where the data is i.i.d. and the i.i.d. bootstrap is used. An analysis of the bootstrap applied to inference

about the autocorrelation function is a topic of ongoing research that we plan to report in a follow-up

paper.
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Table 1: cvα/2(b) Polynomial Coefficients, Parzen Kernel

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9
.4375 .1191 .0863 .4962 -.5787 .4326 .0254 -.0237 -.0237

Table 2: Shape of Confidence Intervals using t̃(k)∗, AR-IID

ϕ = 0.0
T=50 T=100 T=250 T=1000

Case P̂ rob ECP CI P̂ rob ECP CI P̂ rob ECP CI P̂ rob ECP CI

[r1, r2] 1.000 0.955 0.618 1.000 0.951 0.408 1.000 0.953 0.251 1.000 0.948 0.125
(−1, r1] ∪ [r2, 1) 0.000 - - 0.000 - - 0.000 - - 0.000 - -
(−1, 1) 0.000 - - 0.000 - - 0.000 - - 0.000 - -
Total 1.000 0.955 0.618 1.000 0.951 0.408 1.000 0.953 0.251 1.000 0.948 0.125

ϕ = 0.25
T=50 T=100 T=250 T=1000

Case P̂ rob ECP CI P̂ rob ECP CI P̂ rob ECP CI P̂ rob ECP CI

[r1, r2] 1.000 0.942 0.607 1.000 0.941 0.399 1.000 0.948 0.245 1.000 0.952 0.121
(−1, r1] ∪ [r2, 1) 0.000 - - 0.000 - - 0.000 - - 0.000 - -
(−1, 1) 0.000 - - 0.000 - - 0.000 - - 0.000 - -
Total 1.000 0.942 0.607 1.000 0.941 0.399 1.000 0.948 0.245 1.000 0.952 0.121

ϕ = 0.7
T=50 T=100 T=250 T=1000

Case P̂ rob ECP CI P̂ rob ECP CI P̂ rob ECP CI P̂ rob ECP CI

[r1, r2] 0.996 0.898 0.532 1.000 0.909 0.326 1.000 0.930 0.188 1.000 0.943 0.090
(−1, r1] ∪ [r2, 1) 0.004 0.895 1.875 <0.001 1.000 1.885 0.000 - - 0.000 - -
(−1, 1) <0.001 1.000 2.000 0.000 - - 0.000 - - 0.000 - -
Total 1.000 0.898 0.538 1.000 0.909 0.327 1.000 0.930 0.188 1.000 0.943 0.090

ϕ = −0.7
T=50 T=100 T=250 T=1000

Case P̂ rob ECP CI P̂ rob ECP CI P̂ rob ECP CI P̂ rob ECP CI

[r1, r2] 0.987 0.947 0.536 1.000 0.939 0.329 1.000 0.941 0.187 1.000 0.944 0.090
(−1, r1] ∪ [r2, 1) 0.012 1.000 1.935 <0.001 1.000 1.945 0.000 - - 0.000 - -
(−1, 1) 0.002 1.000 2.000 0.000 - - 0.000 - - 0.000 - -
Total 1.000 0.948 0.555 1.000 0.939 0.330 1.000 0.941 0.187 1.000 0.944 0.090
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Table 3: Shape of Confidence Intervals using t̃(k)∗, AR-WN-NLMA

ϕ = 0.0
T=50 T=100 T=250 T=1000

Case P̂ rob ECP CI P̂ rob ECP CI P̂ rob ECP CI P̂ rob ECP CI

[r1, r2] 0.488 0.968 1.125 0.747 0.966 0.883 0.944 0.955 0.587 1.000 0.958 0.304
(−1, r1] ∪ [r2, 1) 0.134 0.985 1.592 0.109 0.987 1.549 0.036 1.000 1.487 <0.001 1.000 1.572
(−1, 1) 0.378 1.000 2.000 0.144 1.000 2.000 0.019 1.000 2.000 <0.001 1.000 2.000
Total 1.000 0.983 1.519 1.000 0.973 1.117 1.000 0.958 0.648 1.000 0.958 0.304

ϕ = 0.25
T=50 T=100 T=250 T=1000

Case P̂ rob ECP CI P̂ rob ECP CI P̂ rob ECP CI P̂ rob ECP CI

[r1, r2] 0.510 0.961 1.098 0.750 0.957 0.864 0.939 0.946 0.572 0.999 0.945 0.293
(−1, r1] ∪ [r2, 1) 0.121 0.977 1.610 0.107 0.983 1.595 0.042 1.000 1.562 0.001 1.000 1.559
(−1, 1) 0.369 1.000 2.000 0.142 1.000 2.000 0.019 1.000 2.000 0.000 - -
Total 1.000 0.977 1.493 1.000 0.966 1.104 1.000 0.950 0.640 1.000 0.945 0.295

ϕ = 0.7
T=50 T=100 T=250 T=1000

Case P̂ rob ECP CI P̂ rob ECP CI P̂ rob ECP CI P̂ rob ECP CI

[r1, r2] 0.662 0.957 0.791 0.812 0.942 0.608 0.930 0.925 0.388 0.996 0.929 0.193
(−1, r1] ∪ [r2, 1) 0.093 0.972 1.671 0.076 0.984 1.769 0.049 0.992 1.854 0.004 1.000 1.859
(−1, 1) 0.245 1.000 2.000 0.112 1.000 2.000 0.021 1.000 2.000 0.000 - -
Total 1.000 0.969 1.169 1.000 0.952 0.852 1.000 0.930 0.494 1.000 0.929 0.199

ϕ = −0.7
T=50 T=100 T=250 T=1000

Case P̂ rob ECP CI P̂ rob ECP CI P̂ rob ECP CI P̂ rob ECP CI

[r1, r2] 0.611 0.976 0.769 0.796 0.975 0.610 0.948 0.968 0.393 0.998 0.966 0.184
(−1, r1] ∪ [r2, 1) 0.109 0.987 1.711 0.080 0.995 1.771 0.034 0.988 1.801 0.002 1.000 1.868
(−1, 1) 0.280 1.000 2.000 0.125 1.000 2.000 0.018 1.000 2.000 0.001 1.000 2.000
Total 1.000 0.984 1.216 1.000 0.980 0.876 1.000 0.969 0.470 1.000 0.966 0.188
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Figure 1.1: Graphs of null rejection probabilities, H0 : ρ1 = 0
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Figure 1.2: Null rejection probabilities, H0 : ρ1 = 0
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Figure 1.3: Null rejection probabilities, H0 : ρ1 = 0
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Figure 1.4: Null rejection probabilities, H0 : ρ1 = 0
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Figure 1.5: Null rejection probabilities, H0 : ρ1 = 0
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Figure 1.6: Null rejection probabilities, H0 : ρ1 = 0
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Figure 1.7: Null rejection probabilities, H0 : ρ1 = 0
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Figure 1.8: Null rejection probabilities, H0 : ρ1 = 0
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Figure 1.9: Null rejection probabilities, H0 : ρ1 = 0
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Figure 2: Null rejection probabilities, H0 : ρ1 =
θ

(1+θ2)
, MA-IID
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Figure 3: Null rejection probabilities, H0 : ρ1 =
θ

(1+θ2)
, MA-MDS
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Figure 4: Null rejection probabilities, H0 : ρ1 =
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Figure 5: Null rejection probabilities, H0 : ρ1 =
θ

(1+θ2)
, MA-WN-1
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Figure 6: Null rejection probabilities, H0 : ρ1 =
θ

(1+θ2)
, MA-WN-Gamma
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DGP: AR-IID : yt =φyt− 1 + εt, where εt ∼ iidNormal(0, 1)

Figure 7: Null rejection probabilities, H0 : ρ1 = ϕ, AR-IID
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Figure 8: Null rejection probabilities, H0 : ρ1 = ϕ, AR-MDS
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t− 1, ut ∼ iidN(0, 1)

Figure 9: Null rejection probabilities, H0 : ρ1 = ϕ, AR-GRACH
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DGP: AR-WN-1 : yt =φyt− 1 + εt, where εt = ut + ut− 1ut− 2, ut ∼ iidNormal(0, 1)

Figure 10: Null rejection probabilities, H0 : ρ1 = ϕ, AR-WN-1
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DGP: AR-WN-GAM1 : yt =φyt− 1 + εt, where εt = ut + ut− 1ut− 2 and ut = ζt −E[ζt], ζt ∼ iidGamma(0.3, 0.4)

Figure 11: Null rejection probabilities, H0 : ρ1 = ϕ, AR-WN-Gamma
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DGP: AR-IID : yt =φyt− 1 + εt, where εt ∼ iidNormal(0, 1)

Figure 12: Size adjusted power, H0 : ρ1 = 0, H1 : ρ1 = ϕ, AR-IID
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DGP: AR-WN-NLMA : yt =φyt− 1 + εt, where εt = ut− 2ut− 1(ut− 2 + ut + 1), ut ∼ iidNormal(0, 1)

Figure 13: Size adjusted power, H0 : ρ1 = 0, H1 : ρ1 = ϕ, AR-WN-NLMA
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Figure 14: Size adjusted power, H0 : ρ1 = 0, H1 : ρ1 = ϕ, AR-WN-Gamma
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Figure 15: Null rejection probabilities, H0 : ρk = 0, IID
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Figure 16: Null rejection probabilities, H0 : ρk = 0, MDS
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Figure 17: Null rejection probabilities, H0 : ρk = 0, GRACH

57



1 2 3 4 5 6 7 8 9 10
lag k

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

N
ul

l R
ej

ec
tio

n 
Pr

ob

T=50
Software
Fixed-b-H0 (SPJ)
Fixed-b (SPJ)
OS-H0 (MSE)
OS (MSE)

1 2 3 4 5 6 7 8 9 10
lag k

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

N
ul

l R
ej

ec
tio

n 
Pr

ob

T=100
Software
Fixed-b-H0 (SPJ)
Fixed-b (SPJ)
OS-H0 (MSE)
OS (MSE)

1 2 3 4 5 6 7 8 9 10
lag k

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

N
ul

l R
ej

ec
tio

n 
Pr

ob

T=250
Software
Fixed-b-H0 (SPJ)
Fixed-b (SPJ)
OS-H0 (MSE)
OS (MSE)

1 2 3 4 5 6 7 8 9 10
lag k

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

N
ul

l R
ej

ec
tio

n 
Pr

ob

T=1000
Software
Fixed-b-H0 (SPJ)
Fixed-b (SPJ)
OS-H0 (MSE)
OS (MSE)

DGP: WN-1 : where εt = ut + ut− 1ut− 2, ut ∼ iidNormal(0, 1)

Figure 18: Null rejection probabilities, H0 : ρk = 0, WN-1
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DGP: WN-GAM1 : where εt = ut + ut− 1ut− 2 and ut = ζt −E[ζt], ζt ∼ iidGamma(0.3, 0.4)

Figure 19: Null rejection probabilities, H0 : ρk = 0, WN-Gamma
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DGP: AR-IID : yt =φyt− 1 + εt, where εt ∼ iidNormal(0, 1)

Figure 20: Null rejection probabilities, H0 : ρk = ϕk, ϕ = 0.5, AR-IID
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DGP: AR-MDS : yt =φyt− 1 + εt, where εt = utut− 1, ut ∼ iidNormal(0, 1)

Figure 21: Null rejection probabilities, H0 : ρk = ϕk, ϕ = 0.5, AR-MDS
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DGP: AR-GARCH : yt =φyt− 1 + εt, where εt = htut and h 2
t = 0.1 + 0.09ε2

t− 1 + 0.9h 2
t− 1, ut ∼ iidN(0, 1)

Figure 22: Null rejection probabilities, H0 : ρk = ϕk, ϕ = 0.5, AR-GRACH
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DGP: AR-WN-1 : yt =φyt− 1 + εt, where εt = ut + ut− 1ut− 2, ut ∼ iidNormal(0, 1)

Figure 23: Null rejection probabilities, H0 : ρk = ϕk, ϕ = 0.5, AR-WN-1
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DGP: AR-WN-GAM1 : yt =φyt− 1 + εt, where εt = ut + ut− 1ut− 2 and ut = ζt −E[ζt], ζt ∼ iidGamma(0.3, 0.4)

Figure 24: Null rejection probabilities, H0 : ρk = ϕk, ϕ = 0.5, AR-WN-Gamma
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Figure 25: Graphs of S&P 500 index daily returns and absolute returns
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Figure 26: Estimated autocorrelations for S&P 500 index returns during pre- and post-Covid
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(b) S&P 500 Index Absolute Returns, February 13, 2020 to September 28, 2023 (post-Covid)
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Figure 27: Estimated autocorrelations for S&P 500 index absolute returns during pre- and post-Covid
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