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Abstract

This paper explores the empirical content of the weak axiom of revealed preference

(WARP) for repeated cross-sectional data. Specifically, in a heterogeneous population, think

of the fraction of consumers violating WARP as the parameter of interest. This parameter de-

pends on the joint distribution of choices over different budget sets. Repeated cross-sections

do not reveal this distribution but only its marginals. Thus, the parameter is not point

identified but can be bounded.

We frame this as a copula problem and use copula techniques to analyze it. The bounds,

as well as some nonparametric refinements of them, correspond to intuitive behavioral as-

sumptions in the two goods case. With three or more goods, the intuitions break down, and

plausible assumptions can have counterintuitive implications. Inference on the bounds is an

application of partial identification through moment inequalities. We implement our analy-

sis with the British Family Expenditure Survey (FES) data. Upper bounds are frequently

positive but lower bounds not significantly so, hence FES data are consistent with WARP in

a heterogeneous population.
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1 Introduction

Motivation. The weak axiom of revealed preference (WARP) is among the core elements of the

theory of rational consumer behavior. In a heterogeneous population, agents differ in their specific

demand behavior, yet economic theory predicts that they individually obey the weak axiom. This

paper explores the empirical content of this prediction for repeated cross-sectional data, i.e. the

ability of such data to reject, be consistent with, or even imply (up to sampling uncertainty) the

weak axiom. We approach this question as an exercise in bounds or partial identification. In

particular, we are interested in the fraction of consumers violating WARP. This parameter should

be zero according to economic theory. Its empirical value depends on the joint distribution of

choices over different budget sets. Repeated cross-sections do not reveal this joint distribution

but do reveal the marginal distribution of demand on every single budget set. Bounds on the

fraction of consumers who violate WARP are implied; indeed, they are closely related to the

classic Fréchet-Hoeffding bounds. We develop these bounds, refine them using nonparametric

assumptions, and apply them to the U.K. Family Expenditure Survey. One motivation for this

exercise is to provide a complement to the nonparametric estimation of “revealed preference”

bounds on behavior derived from similar data sets (e.g., Blundell, Browning, and Crawford (2003,

2008)). We provide some insight as to how much mileage can be gained from strict revealed

preference assumptions alone, without additional aggregation assumptions and only invoking weak

assumptions on the dependence structures.

To see the gist of the identification problem, suppose one is interested in the joint distribution

of demand on just two different (intersecting) budget lines, but one only knows the marginal

distribution of demand on each of these budget lines. The intended applications are situations

where one faces repeated cross-sections of the population of interest, a setting that corresponds

to many practical applications and data sets. Thus, one knows the marginal but not the joint

distribution of choices; in other words, the aspect of the relevant distribution that is not identified

is precisely the copula.

- figure 1 about here -.

The problem is illustrated in figure 1, which displays two intersecting budget lines and (as

shaded areas) the marginal distributions of consumers on those lines. WARP is violated by those

consumers whose choices lie in the emphasized segment of each budget line. The proportion of

these consumers in the population depends on the displayed marginal distributions but also on the

copula linking them. This copula has an intuitive interpretation: Consumers can be thought of as

being ordered with respect to their revealed preference for good 2 in any given period. The copula
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describes how much realignment with respect to this ordering occurs as consumers get relocated

from one budget to the other one. Two copulas stand out as extreme: The “best behaved”

population might be one where this ordering is precisely maintained; the “worst behaved” (or at

least most heterogeneous) one might correspond to its complete reversal. For this simple example

and if distributions are continuous, these two dependence structures do indeed generate upper

and lower worst-case bounds on P(WARP violated). Furthermore, the two copulas just described

correspond to the Fréchet-Hoeffding upper and lower limit copulas. In the continuous case, the

problem thus becomes an application of a classic finding.

Our contribution is to observe this connection to the copula literature and to exploit it in

numerous ways. First, we develop the result for mixed discrete-continuous distributions, with

the above case as corollary, and also show how the resulting bounds can (under assumptions) be

integrated over budget sets to bound P(WARP violated) for populations that face heterogeneous

budgets. Second, we use the existing literature on copulas, but also some novel ideas, to refine

bounds from above and below. In particular, we impose some nonparametric dependence structure

between demand in different budgets, i.e. we nonparametrically constrain unobserved heterogene-

ity, leading to tighter bounds. In the two-good case, it turns out that some such assumptions

are both intuitively meaningful (and perhaps reasonable) and qualitatively affect bounds in the

way that one might have expected. Third, we generalize the analysis to three and more goods.

This generalization has some unpleasant features: While Fréchet-Hoeffding bounds still apply, the

according worst-case copulas do not correspond to plausible, or at least easily comprehensible,

restrictions on heterogeneity in the population. What is more, mathematically natural gener-

alizations of the aforementioned, partially identifying assumptions fail to have clear intuitions

and may have unexpected effects on the bounds. As one particular example, many assumptions

which seemingly force the population to be well-behaved can actually induce spurious violations

of WARP, that is, they can refine the lower bound of P(WARP violated) away from zero for data

that were generated by a rational population.

We finally bring the analysis to a practical application, estimating the bounds on data from

the British Household Expenditure Survey. Inference on the bounds is an application of moment

inequalities, a recently burgeoning literature in econometric theory that we apply and adapt. The

empirical result is that point estimators of bounds indicate occasional violations of WARP but

these are far from statistically significant. The data are consistent with WARP, either because

consumers exhibit minimal rationality or because WARP is just too weak (or, of course, both).

Related Literature. This paper touches on a number of distinct issues, including the in-

tegrability of stochastic demand functions, the theory of copulas, and inference on parameters

that are partially identified by moment inequalities. Consequently, there are points of contact
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to numerous literatures, some of which might be called classic and some of which are currently

developing.

This is primarily a paper about revealed preference. The revealed preference approach to

consumer demand was introduced and popularized by Afriat (1978), and Varian (1982). This work

lays the economic foundations for our approach. However, all empirical applications at the time

considered one (usually representative) consumer, and the notion of unobserved heterogeneity did

not arise. The closest predecessor to our identification analysis is the literature on integrability of

stochastic demand; see, in particular, Falmagne (1978), Barberà and Pattanaik (1986), McFadden

and Richter (1991), and McFadden (2005). As we will explain below, some of our results could

alternatively (if cumbersomely) be derived from there. One main difference is that we explicitly

attack the problem as one of partial identification and consider upper and lower bounds on the

fraction of rational consumers rather than just asking whether the lower bound is zero. Perhaps

more importantly, by considering WARP rather than SARP we test an even more primitive notion

of rationality and turn the problem into one that is precisely suited to the tools developed in the

literature on copulas, as well as in the literature on moment inequalities. Also, WARP suffices as

a foundation of consumer demand theory (Kihlstrom, Mas-Colell and Sonnenschein (1976)), hence

seems natural as an object of interest for an approach that focuses solely on the core objects of

consumer rationality.

In this setup, we provide an economic interpretation involving the behavior of individuals in a

heterogeneous population, show how this relates to refinements proposed in the copula literature,

and establish the sense in which these intuitions break down in the high dimensional case. As

already mentioned, our work is also related to applications of revealed preference to consumer

demand, in particular by Blundell, Browning, and Crawford (2003, 2008); see Cherchye, Craw-

ford, de Rock, and Vermeulen (2009) for an overview. This literature tests revealed preference

theory, and uses it to derive bounds on demand regression. However, their stochastic models of

unobserved heterogeneity are limited. For instance, Blundell, Browning, and Crawford (2003)

focus on revealed preference analysis using the mean regression, which comes close to imposing a

representative agent assumption because additive deviations from the conditional mean cannot in

general be generated by a structural model (due to well known aggregation problems of WARP;

see, e.g., Mas-Colell, Whinston, and Green (1995), p.110).1 Our contribution complements this

line of research by adding unrestricted heterogeneity. Since we are employing a nonseparable

model in a consumer demand setup, our contribution is also nested within the wider econometric

literature on nonparametric identification of economic hypotheses using nonseparable models; see

1Like us, Blundell, Browning, and Crawford (2003, 2008) focus on the implications of WARP. In current work,

Blundell, Browning, Cherchye, Crawford, de Bock, and Vermeulen (2012) extend the approach to SARP.
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Matzkin (2006) for a lucid overview.

Formally, the present identification problem is also related to one that received attention in the

treatment effects literature. Consider learning about the distribution of a treatment effect, ∆ ≡
Y1−Y0 (or variations thereof), when a randomized experiment identifies the marginal distributions

of potential outcomes Y0 and Y1. Clearly, a similar partial identification problem to ours emerges,

namely, marginals are perfectly but copulas are not at all identified. The issue is commonly

avoided by focusing attention on the expected value of the treatment, which does not depend

on the copula. Researchers genuinely interested in the distribution of the treatment effect have,

however, brought Fréchet-Hoeffding’s and related bounds to this problem (Heckman, Smith, and

Clemens (1997), Manski (1997), Fan and Park (2010)). While motivated by a very different

question, this literature has some formal similarities to what we are doing. The technical difference

is that we are interested in features of the joint distribution, notably P(WARP violated), that do

not correspond to interesting aspects of the distribution of ∆, thus the detail of our identification

analysis is quite different. Also, both Heckman, Smith, and Clemens (1997) and Manski (1997)

recognize that inference on the resulting bounds is nonstandard but do not focus on it; Fan and

Park’s (2010) results on inference do not apply here.

Finally, inference on our bounds is an application of moment inequalities, a currently very

active literature. While we do not provide a conceptual innovation to this field, it is interesting

to note that mechanical application of existing approaches, in particular of Andrews and Soares

(2010), can be improved upon by exploiting the specific structure of our bounds. We expect that

the same will hold true for many other applications of moment inequalities, and that this paper

might accordingly be of interest as case study of such an application.

Structure of the Paper. The remainder of this paper is structured as follows. Section 2

is devoted to identification analysis: We describe and solve the identification problem, that is,

we find bounds on the fraction of consumers that violate WARP under the assumption that all

observable features of population distributions are known. We provide worst-case bounds as well

as bounds that use partially identifying assumptions and conduct this analysis in two as well

as more dimensions, with the latter analysis having a qualitatively different message. Section

3 develops the necessary tools for inference. Section 4 contains our empirical application, and

section 5 concludes. In the online supplement to this paper, Appendix I contains auxiliary tables,

and appendix II collects all proofs.
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2 Identification Analysis

This section analyzes identification of the fraction of a population who violate WARP. Thus, we

discover what we could learn about this fraction if the population distribution of observables were

known. Estimation and inference will be considered later.

Consider, therefore, a population of agents who face an income process (Yt)t=1,..,T and a con-

sumption set Rm
+ , where m ≥ 2 denotes the number of distinct goods. Individual demand is

given by the time invariant function Q(yt,pt, z, a) : R × Rm
+ × Z × A → Rm

+ , t = 1, .., T , where

Q(yt,pt, z, a) ∈ {x ∈ Rm
+ : ptx ≤ yt}, z ∈Z ⊆ Rl denotes observable covariates (assumed time

invariant for simplicity) and a ∈ A denotes time invariant unobservable covariates. Note that

the function Q is nonstochastic and constant across consumers; without loss of generality, het-

erogeneity is absorbed by A. In the repeated cross-section scenario that constitutes our leading

application, one would think of A = al as a consumer with preference al. The distribution of

(Yt,Q(Yt,pt,Z,A),Z) is identified for every t in the sample.2 The sequence (pt)t=1,..,T is consid-

ered nonstochastic. With slight abuse of notation (by suppressing (ys, yt) as arguments), we will

also define the random variables Qs ≡ Q(ys,ps, z,A) and Qt ≡ Q(yt,pt, z,A) in settings where

realizations (ys, yt, z) of (Ys, Yt,Z) are conditioned upon.

To obtain implications that are testable from our data, we have to assume some structure

within and across time periods.

Assumption 1. (i) Budgets are exhausted, i.e. P(p′tQ(Yt,pt,Z,A) = Yt) = 1.

(ii) For any time periods s and t, ∆Yst ≡ Ys − Yt is independent of A conditional on (Z,Yt).

Assumption 1(i) can be substantively motivated by nonsatiation or free disposal. It is a prac-

tical necessity because our data do not include independent observations on income, i.e. we

have to equate income with expenditure. Assumption 1(ii) is standard in the related literature

on nonseparable models (Matzkin (2006)). It states that preferences for the goods in question

and income changes are independent conditional on current income and household characteris-

tics. For an intuition, suppose there are two types of income shocks, say positive and negative,

where the size depends on covariates (Z,Yt) (think of this conditioning as allocating an individ-

ual to a cell defined by values z0, yt,0). Suppose further that for a good k, there are two types

of individuals, ak and ak′ say, where type ak idiosyncratically likes good k and type ak′ does

not. Then assumption 1(ii) states that, conditional on covariates having a certain value and for

both positive and negative income shocks, there must be equal proportions of ak and ak′ in the

2We use the following conventions: Large letters denote random variables and small letters denote realizations

(as well as nonrandom variables). Vectors are identified by bold typeface.
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population. This implies identification of the distribution of (Ys, Yt,Q(Ys,ps,Z,A),Z) as well

as (Ys, Yt,Q(Yt,pt,Z,A),Z); conditional on covariates, we can identify the joint distribution of

consumption in the respective period, and income across periods, from the respective marginals.

The assumption is not sufficient to identify the joint distribution of consumption across periods,

i.e. of (Ys, Yt,Q(Ys,ps,Z,A),Q(Yt,pt,Z,A),Z), from its marginals.

If assumption 1(ii) does not hold, then it is possible to introduce instruments into this frame-

work. In particular, in classical consumer demand often total expenditure is used as an income

concept, which is valid under an intertemporal separability assumption on preferences, see Lewbel

(1999). In this case, we employ labor income as instrument in a control function fashion, which

is the common instrument in the demand literature, see again Lewbel (1999). In our setup, this

requires to add control function residuals as additional regressors, and assumption 1(ii) has to

be modified to hold conditionally on these residuals, which would be implied if the increments in

labor income were jointly independent of A conditionally on Z and labor income. Moreover, we

could extend our setup to allow the prices to be stochastic. In this case, we would have to modify

assumption 1(ii) to allow for price increments to be independent of A conditionally on (Z,Yt,Pt).

However, given that we have aggregate prices and only limited price variation, the assumption of

those being nonrandom seems hardly restrictive.

Fix any two time periods s and t and initially condition on a realization (ys, yt, z) of (Ys, Yt,Z);

integration of the resulting bounds will be considered at the end of this section. Conditional

demand is, then, distributed as Qs in period s and Qt in period t. Recall that the marginal

distributions of Qt and Qs are identified but their joint distribution is not. A given consumer’s

choices violate WARP if one choice would have been strictly affordable given the other budget,

that is, if p′sQt ≤ ys and p′tQs ≤ yt, with at least one inequality being strict. The fraction of

consumers who violate WARP (or, equivalently from an identification point of view, the population

probability of violating it) is

Pyz(WARP violated) = Pyz ((p′sQt ≤ ys,p
′
tQs < yt) ∨ (p′sQt < ys,p

′
tQs ≤ yt)) , (2.1)

for all s, t ∈ {1, .., T} , where Pyz(·) ≡ P(·|Ys = ys, Yt = yt,Z = z). This probability is a

feature of the joint distribution of (Qt,Qs) and hence, is not identified. We will initially develop

bounds on it for the two-good case. This case turns out to be characterized by a tight relation

between bounds and meaningful (if not necessarily reasonable) assumptions about the evolution of

demand in the population. We then generalize the analysis to three and more goods, illustrating

all concepts with an example in the three goods case, where a graphical intuition is still available.

The multiple goods case qualitatively differs from the two goods one. Bounds are easily derived

by generalizing previous concepts, but plausible conditions on individual behavior are harder to
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find. Conversely, natural generalizations of the behavioral interpretation of the two-dimensional

case will fail to provide reasonable bounds. Assumptions that seem to impose a “more regular”

behavior of the population may refine bounds from below but not from above and may spuriously

indicate violations of WARP. The reason for this may be found in the difficulty of finding a natural

ordering of goods.

2.1 The Two Good Case

2.1.1 The General Result

The two-good case will be developed separately for at least two reasons. First, in the two-good

case only, WARP and SARP are equivalent (Rose (1958)), and hence this subsection is really

about testing either. Second, the two good case has many intuitive features that do not generalize

to three or more goods. Thus, fix any two time periods s and t and set m = 2, meaning that

the consumers’ problem is characterized by two time periods and two budget lines Bs and Bt in

R2
+. Normalizing pt = (1, pt), we can use assumption 1(i) to write Qt = (yt − ptQt, Qt), thus

it suffices to think in terms of scalar random variables (Qs, Qt). Budgets Bs and Bt intersect at

Qs = Qt = (yt − ys)/(pt − ps). Assume w.l.o.g. that ys/ps > yt/pt, i.e. Bs has the larger vertical

intercept, then WARP is violated iff Qt ≥ (yt−ys)/(pt−ps) > Qs or Qt > (yt−ys)/(pt−ps) ≥ Qs.

(See again figure 1, where the distribution of Qs corresponds to the lighter shaded probability.)

The probability of this event is constrained by the marginal distributions of Qt and Qs but also

depends on how consumers are re-ordered along the budget lines between periods s and t. It can

be bounded as follows.

Proposition 1. Suppose the model of individual demand as outlined above holds. Let assumption

A1 hold and assume that the distributions of Qs and Qt are known. Finally, assume that all

probabilities are well defined. Then,

max

{
Pyz(Qs ≤ (yt − ys)/(pt − ps))− Pyz(Qt < (yt − ys)/(pt − ps))

−min {Pyz(Qs = (yt − ys)/(pt − ps)),Pyz(Qt = (yt − ys)/(pt − ps)} , 0

}
≤ Pyz(WARP violated) ≤

min

{
max {Pyz(Qs < (yt − ys)/(pt − ps)),Pyz(Qt > (yt − ys)/(pt − ps)} ,

Pyz(Qs ≤ (yt − ys)/(pt − ps)),Pyz(Qt ≥ (yt − ys)/(pt − ps)

}
.

These bounds are tight in the sense that in the absence of further information, both bounds as well

as any intermediate value are attainable.

8



This result applies no matter whether (Qs,Qt|Ys, Yt,Z) is distributed continuously, discretely,

or as a mixture of the two. It provides bounds for the parameter of interest that can be determined

from the marginals, using only observable, and hence estimable, quantities. The bounds are tight,

meaning that they fully exploit the information contained in these quantities. In particular, we

show in the proof (in appendix II) that there exist probability distributions that generate the

relevant marginals for Qs and Qt and achieve the bounds. Hence, improving on these bounds

is only possible at the price of introducing additional assumptions. Similar remarks apply to all

bounds reported later.

2.1.2 Specialization to Continuous Demand

We now specialize proposition 1 to the case where (Qs,Qt|Ys, Yt,Z) is distributed continuously.

We will also work with this case, which leads to a rather simple and intuitive result, later on.

Whether the continuity assumption is realistic depends on one’s perspective. If one thinks of all

British consumers as the population of interest, then the true population distribution is of course

discrete, albeit so finely grained that the simplification gained from assuming continuity may be

worth the price. Continuity is appropriate without any such caveats if one thinks of the U.K.’s

populace as a (rather large) sample from a meta-population of interest.

In the continuous case, we can simplify (2.1) as follows:

Pyz(WARP violated) = Pyz (p′sQt < ys,p
′
tQs < yt) . (2.2)

This event has a simple geometric interpretation. Denote the boundary of the time t budget

constraint by

Bt ≡ {q ≥ 0 : p′tq = yt}

and remember that P(Qt ∈ Bt) = 1 by assumption 1(i). Thus, the set of time t choices that are

both consistent with assumption 1(i) and affordable given the time s budget is

Bt,s ≡ {q ≥ 0 : p′tq = yt,p
′
sq < ys} ,

the intersection of Bt with the half-space below (the hyperplane containing) Bs. Hence,

Pyz(WARP violated) = Pyz
(
(Qs,Qt) ∈ Bs,t × Bt,s

)
,

the probability that both Qs and Qt are contained in the respective half-spaces; consider again

figure 1. Given that the marginal probabilities
(
Pyz
(
Qs ∈ Bs,t

)
,Pyz

(
Qt ∈ Bt,s

))
are known, the

problem of bounding Pyz
(
(Qs,Qt) ∈ Bs,t × Bt,s

)
is the original Fréchet-Hoeffding bounding prob-

lem, and it can indeed be verified that proposition 1 simplifies to this classic result.
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Corollary 2. (Fréchet-Hoeffding Bounds) Let the conditions of Proposition 1 be satisfied

and assume in addition that the distributions of Qs and Qt are continuous. Then

max{Pyz
(
Qs ∈ Bs,t

)
+ Pyz

(
Qt ∈ Bt,s

)
− 1, 0}

≤ Pyz(WARP violated)

≤ min
{
Pyz
(
Qs ∈ Bs,t

)
,Pyz

(
Qt ∈ Bt,s

)}
.

These bounds are tight.

In the two-dimensional case, the crucial probabilities can be written in terms of (Qs, Qt, ps, pt, ys, yt).

Recalling that s is normalized to correspond to the budget line with higher intercept, we have

Qs ∈ Bs,t ⇐⇒ Qs < (yt − ys)/(pt − ps)

Qt ∈ Bt,s ⇐⇒ Qt > (yt − ys)/(pt − ps).

Notice in particular that the lower half-space Bt,s is an upper contour set of Qt. The Fréchet-

Hoeffding Bounds then become

max {Pyz(Qs < (yt − ys)/(pt − ps))− Pyz(Qt < (yt − ys)/(pt − ps)), 0}

≤ Pyz(WARP violated) ≤

min {Pyz(Qs < (yt − ys)/(pt − ps)), 1− Pyz(Qt < (yt − ys)/(pt − ps))} ,

which is the expression we will work with later on.

We will restrict attention to continuous distributions henceforth. Before turning to exten-

sions of our result, we elaborate further on some corollaries and the relation of this result to the

literature.

(i) Empirical Content of WARP A corollary of our result is to identify the empirical content

of WARP. Specifically, choice probabilities are consistent with WARP iff the lower bound on

Pyz(WARP violated) equals zero. This is the case if

Pyz(Qs ≤ (yt − ys)/(pt − ps))− Pyz(Qt < (yt − ys)/(pt − ps))

−min {Pyz(Qs = (yt − ys)/(pt − ps)),Pyz(Qt = (yt − ys)/(pt − ps)} ≤ 0,

which in the continuous case simplifies to

Pyz(Qs ≤ (yt − ys)/(pt − ps))− Pyz(Qt < (yt − ys)/(pt − ps)) ≤ 0
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or equivalently to

Pyz
(
Qs ∈ Bs,t

)
+ Pyz

(
Qt ∈ Bt,s

)
≤ 1 (2.3)

⇐⇒ Pyz
(
Qs ∈ Bs,t

)
≤ Pyz

(
Qt /∈ Bt,s

)
⇐⇒ Pyz

(
Qt ∈ Bt,s

)
≤ Pyz

(
Qs /∈ Bs,t

)
.

This finding is not new; see (ii) below for previous appearances in the literature. The corollary

fully applies to higher dimensions (with notational adaptations indicated later). Intuitively, it

means that if a budget plane is rotated, the probability mass on the part of the plane that is

rotated toward the origin must weakly shrink, whereas the mass on the part that is rotated away

from the origin must weakly expand. There is no empirical content if the “before” and “after”

budgets fail to intersect.

These restrictions certainly do not appear very strong. Furthermore, they are implied not only

by WARP but also by a host of other restrictions on individual behavior. For example, they are

easily derived from the assumption that consumers choose independently (across consumers and

time periods) from uniform distributions over budget planes.3 Nonparametric, assumption-free

tests of WARP from cross-sectional data will have accordingly limited power, but this is simply

due to the limited empirical content that WARP has on its own.

(ii) Relation to Bounds on P(SARP violated). Our findings are related to classic work on

stochastic revealed preference theory (Falmagne (1978), Barberà and Pattanaik (1986), McFadden

and Richter (1991), McFadden (2005)). For an idealized problem where the set of possible budgets

is finite at the population level, McFadden and Richter (1991) show that consistency of a collection

of cross-sectional demand distributions with SARP can be checked by solving a linear programming

problem.4 Intuitively, the value of this problem is the maximal probability mass that can be

assigned to rational (in the sense of fulfilling SARP) types within an unrestricted, underlying type

space. The difference between this value and 1 is, therefore, the minimal probability mass that

must be assigned to irrational (in the same sense) types, i.e. a lower bound on the probability

that SARP is violated in the population. It seems clear that an upper bound on this probability

could similarly be computed by solving the same problem except for probability mass assigned to

irrational types.

3This observation resembles a classic discussion by Becker (1962).
4McFadden (2005) generalizes the analysis to the case of continuous families of budgets. While this adds many

technical intricacies, the operational test of rationality suggested is to perform the same analysis on a (large) finite

selection of budgets.
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In the two-periods, two-goods case, it can be verified that explicit solution of these program-

ming problems recovers corollary 2 (as it should, recalling that WARP implies SARP in this case).

One could therefore derive expression (2.3) by McFadden and Richter’s method, as is indeed done

in Matzkin (2006). Analogies break down in more complex versions of the problem, including the

case of more than two goods and the refinements presented later in this paper. While McFad-

den and Richter’s findings are suggestive of how to bound P(SARP violated) in these cases, the

technical problem becomes quite a different one: It is not usefully phrased in terms of copulas,

nonparametric refinements of the type discussed below appear elusive, and inference will not be

tightly connected to the theory of moment inequalities. We therefore leave this question to future

research.

(iii) Relation to the Weak Axiom of Stochastic Revealed Preference. This paper is

about demand in a heterogeneous population, not stochastic individual demand. However, con-

nections between these two models were investigated by Bandyopadhyay, Dasgupta, and Pattanaik

(BDP henceforth), and some of their findings relate to ours. Consider a model where one indi-

vidual draws a demand function at random from a set of latent demand functions whenever she

faces a choice. This can be formally identified with our model by letting A index the latent de-

mand functions. In this context, WARP is not a natural restriction on demand, but BDP (1999)

proposed a stochastic analog, the weak axiom of stochastic revealed preference (WASRP). Some

known results regarding the relation between the two are as follows. If budget sets are exploited,

then WASRP is equivalent to a condition that BDP (2004) call “stochastic substitutability.” It is

easily verified that stochastic substitutability is equivalent to the lower bound from proposition 1

being zero. Furthermore, BDP (2002) show that imposing WARP on each demand function that

the individual can draw is strictly stronger than imposing WASRP on her stochastic demand. In

our setting, these findings jointly imply that the lower bound must be zero under the algebraic

condition under which we show it to be zero (but could also be zero in other cases) and that

there must exist examples in which the lower bound is 0 yet the upper bound is strictly positive

(in fact, 1 upon examination of their particular example). Proposition 1 obviously improves on

this. The improvement can be re-imported into Bandyopadhyay et al.’s setting. If budgets are

exploited (which is assumed in their (2004) but not (2002)), then we show that WASRP precisely

delineates the empirical content of imposing WARP on latent demand functions, and by providing

the upper bound (which can be interpreted in the stochastic utility setting as maximal proportion

of latent demand functions that violate WARP), we quantify the wedge between imposing WARP

on individual functions and imposing WASRP on stochastic demand.
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(iv) Unconditional Bounds Suppose one also knows (or can estimate) the joint distribution

of (Y1, . . . YT ,Z); this is a realistic assumption as panel income data sets exist for many countries.

Under assumption 1, one can then generate unconditional bounds on P(WARP is violated) by

integrating the preceding bounds over (Ys, Yt,Z). For the worst-case bounds, this means the

following.5

Lemma 2.1. Let the conditions of corollary 2 hold and suppose that the distribution of (Ys, Yt,Z)

is known. Then∫
max{Pyz

(
Qs ∈ Bs,t

)
+ Pyz

(
Qt ∈ Bt,s

)
− 1, 0}F (d(ys, yt, z)) ≤ P(WARP is violated)

≤
∫

min
{
Pyz
(
Qs ∈ Bs,t

)
,Pyz

(
Qt ∈ Bt,s

)}
F (d(ys, yt, z)).

These bounds are tight.

2.1.3 Nonparametric Refinements

One upshot of the preceding section is that the identification problem is really about copulas,

more specifically, about the copula connecting Qs and Qt. Recognizing this allows one to refine

the above bounds by importing results about copulas. We now present some such assumptions

and their exact implications.

The lower and upper bounds on Pyz(WARP violated) correspond to measures of dependence

between Qs and Qt that are extremal in an intuitive sense: They impose that this dependence is

either perfectly positive (the α-quantile of Qt is always realized jointly with the α-quantile of Qs)

or perfectly negative (the α-quantile of Qt is always realized jointly with the (1−α)-quantile of Qs).

Many nonparametric measures of dependence interpolate between these extremes. Restrictions

on any of them may induce narrower bounds.

One nonparametric dependence concept that has gained popularity in the copula literature is

quadrant dependence:

Definition 3. The copula linking Qs and Qt exhibits positive [negative] quadrant dependence if

Pyz((Qs, Qt) = (a, b)) ≥ [≤]Pyz(Qs ≥ a)Pyz(Qt ≥ b))

for all scalars a, b.

5To keep expressions simple, we here abuse notation: Bs,t and Bt,s depend on (Ys, Yt) and therefore vary over

the integrals.
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Positive quadrant dependence means that large (and small) values of the individual variables

coincide more often than would be expected under independence. In our application, this is to

say that consumers who reveal strong taste for good 2 at time s tend to do the same at time t.

Negative quadrant dependence is the intuitive opposite.

Imposing quadrant dependence leads to the following refinement.

Lemma 2.2. (i) Let the conditions of Proposition 1 hold and assume positive quadrant depen-

dence, then

max{Pyz
(
Qs ∈ Bs,t

)
+ Pyz

(
Qt ∈ Bt,s

)
− 1, 0}

≤ Pyz(WARP is violated) ≤

Pyz
(
Qs ∈ Bs,t

)
Pyz
(
Qt ∈ Bt,s

)
.

(ii) Let the conditions of Proposition 1 hold and assume negative quadrant dependence, then

Pyz
(
Qs ∈ Bs,t

)
Pyz
(
Qt ∈ Bt,s

)
≤ Pyz(WARP is violated) ≤

min
{
Pyz
(
Qs ∈ Bs,t

)
,Pyz

(
Qt ∈ Bt,s

)}
.

These bounds are tight.

Positive respectively negative quadrant dependence therefore neatly separate the worst-case

bounds into two regions, one that is associated with positive and one that is associated with nega-

tive dependence. The boundary between the regions corresponds to independence. Substantively,

it is certainly positive rather than negative quadrant dependence that we mean to suggest as

interesting restriction on behavior across choice situations.

Numerous nonparametric measures of dependence can be used to strengthen positive quadrant

dependence. In particular, one could impose that the copula exhibit tail monotonicity, stochastic

monotonicity, corner set monotonicity, or likelihood ratio dependence (known as affiliation in the

auctions literature). See, for example, Nelsen (2006) for definitions of all of these, which are listed

roughly in order of increasing stringency. Imposing any of them would lead to the same bounds

identified above: All of them imply quadrant dependence, so the bounds cannot be wider; but

all of them also allow for independence as boundary case as well as for the relevant one of the

original worst-case bounds, so the bounds do not become tighter. Within this family, quadrant

dependence therefore stands out as the weakest restriction that generates the above refinement.6

6Comparisons of nonparametric concepts of positive dependence in Yanamigoto (1972) support the same con-
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The approach can be extended by importing other suggestions from the literature on copulas.

For example, one could bound dependence between choice on Bs and choice on Bt in terms of the

medial correlation coefficient (Blomquist’s β), the rank correlation coefficient (Spearman’s ρ), or

Kendall’s τ . The resulting bounds on joint c.d.f.’s, and hence on Pyz(Qs ∈ Bs,t,Qt ∈ Bt,s), then

follow from known results (Nelsen et al. (2001), Nelsen and Úbeda-Flores (2004)). Alternatively,

one could limit the change in quantile position that any given consumer experiences as the budget

changes from Bs to Bt (closed-form results for such assumptions are available from the authors).

We omit elaborations because displaying any of these bounds involves much algebra, but note

that numerical evaluation would in all cases be easy.

2.2 The Multiple Goods Case

We now analyze the multiple goods case, emphasizing differences to the two goods one. One

can use integration of bounds as in the two good case, and we therefore condition on (ys, yt, z)

throughout this section. We also continue to restrict attention to continuous distributions. As

a result, the Fréchet-Hoeffding bounds from corollary 2 still apply; note in particular that the

definitions of Bt and Bt,s did not restrict dimensionality of commodity space. The analysis could

also be generalized to mixed continuous-discrete distributions, but the necessary bookkeeping

regarding point masses becomes very tedious.

We will keep our discussion of the multiple goods case brief but use the following example to

make two cautionary remarks.7

Example 1. Let there be three goods, let p1 = (10, 6, 5), p2 = (5, 10, 6), and y1 = y2 = 30.

The according budget hyperplanes are most easily described by their intercepts: B1 is spanned

by ((3, 0, 0), (0, 5, 0), (0, 0, 6)), B2 is spanned by ((6, 0, 0), (0, 3, 0), (0, 0, 5)). Assume that Q1 is

supported on (a1, a2, a3) = ((5/7, 0, 32/7), (1, 0, 28/7), (9/7, 20/7, 0)), that Q2 is supported on

(b1,b2) = ((0, 0, 5), (6, 0, 0)), and that the joint distribution of (Q1,Q2) is characterized by the

following population-level contingency table, where the bold row and column indicate marginal

distributions.

clusion, i.e. quadrant dependence is weakest among large classes of such concepts, none of which would lead to

tighter bounds. Two concepts that are insufficient to generate the above bounds are positive correlation and a

positive value of Kendall’s τ .
7For easy verifiability, the example uses mass points, but it is not dependent on them – all statements made

about the example also hold true if the mass points are “fudged” into uniform distributions on ε-balls around them.
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b1 b2

a1 1/4 0 1/4

a2 0 1/4 1/4

a3 1/4 1/4 1/2

1/2 1/2

It is easily calculated that of the support of Q1, only a2 lies on B1,2. On the support of Q2, it is

b1 that lies on B2,1. Thus, the population does not violate WARP. Using only the marginals, one

would find Pyz(Q1 ∈ B1,2) = 0.25, Pyz(Q2 ∈ B2,1) = 0.5, and hence 0 ≤ Pyz(WARP violated) ≤
0.25.

Remark 1: Extremal copulas do not have an easy economic interpretation any more.

The copulas achieving the bounds in example 1 have a geometric interpretation. Order elements

of Bs increasingly according to p′tq, i.e. according to how expensive they would be given time t

prices. Similarly, order elements of Bt according to p′sq but in decreasing order. These orderings

have in common that their level sets are parallel to Bs ∩ Bt; furthermore, they identify Bs,t as a

lower and Bt,s as an upper contour set.8 Then the lower Fréchet-Hoeffding bound is achieved by

assuming that all consumers maintain their quantile position with respect to these orderings, and

the upper bounds are achieved by inversion of the orderings.

In two dimensions, this procedure has the interpretation given before, i.e. the copulas corre-

spond to minimal respectively maximal reordering of consumers with respect to revealed preference

for good 1 over good 2. This interpretation is now lost. The ordering to be maintained or re-

versed is according to how much one would have to pay consumers (or tax them) so that they

could just afford their previous consumption bundle. This ordering does not have much economic

significance.9 In particular, it is hard to see how an ordering of subjects on Bs that depends on

time t prices (and vice versa) would arise from natural restrictions on behavior.

8Tie-breaking rules of the orderings matter only if distributions have mass points, which were assumed away.
9To see a vestige of economic meaning, assume for the moment that preferences exist and consider the problem

of bounding the compensating variation for a consumer who moves from Bs to Bt. With the few assumptions

imposed here, a lower bound on this CV will always be zero because the consumer could be indifferent across all

bundles. The upper bound is given by (p′tqs−yt), the payment needed so that the consumer can afford her previous

bundle. The ordering over Bs therefore accords with the upper bound on compensating variation as consumers

move from Bs to Bt, whereas a similar reasoning reveals that the ordering on Bt accords with an upper bound on

equivalent variation. Perfectly positive dependence then means that both orderings coincide, perfectly negative

dependence maximizes their disagreement.
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Remark 2: Restrictions on copulas are harder to justify and may have unexpected

effects. While the copula that generates lower worst–case bounds has no clean interpretation,

one might want to maintain quantile constancy with respect to “revealed preference for good k”

anyway. The effects of such assumptions can still be computed numerically. We will now illustrate

in example 1 that they can be rather counterintuitive; thus, example 1 is intended as somewhat

of a cautionary tale. To this end, consider the following definitions:

Definition 4. Let
(
Qs,Qt

)
and (Q̃s, Q̃t) be distributed independently according to the distribution

of (Qs,Qt). Then we can define the following properties of the copula joining Qs and Qt.

Co-ordinatewise quantile constancy:(
Qs − Q̃s

)
�
(
Qt − Q̃t

)
= 0 a.s.,

where � denotes the componentwise product. In words, any matching components of
(
Qs − Q̃s

)
and

(
Qt − Q̃t

)
are concordant (their product is non-negative) a.s.

Association:

Pyz(Qs ∈ A,Qt ∈ B) ≥ Pyz(Qs ∈ A)Pyz(Qt ∈ B)

for all upper contour sets A and B.

Co-ordinatewise positive quadrant dependence:

Pyz(Q[i]
s ≥ a,Q

[i]
t ≥ b) ≥ Pyz(Q[m]

s ≥ a,Q
[m]
t ≥ b)

for all scalars a, b and orthants i ≤ m; here, Q
[i]
t is the i-th component of Qt.

Co-ordinatewise quantile constancy is rather strong; it is not only point identifying but testable

in the sense of generating cross-marginal restrictions that might be violated in the data.10 We

therefore also showcase two weakenings of it that are assumptions about copulas proper and,

therefore, not testable from observation of marginals. Association is strictly stronger than co-

ordinatewise positive quadrant dependence.

All of these assumptions seem to enforce some consistency of tastes and hence, appear opti-

mistic in the sense of limiting the probability of violating WARP. This impression is misleading –

the assumptions may actually refine bounds from below but not from above.

Example 2. (solution) The population marginals are compatible with co-ordinatewise quantile

constancy. They then imply that P(WARP violated) = 0.25. If the location of b2 were changed to

10Hence, despite our wording, it is not strictly an assumption about copulas only and accordingly not known

in the copulas literature. Heterogeneous Cobb-Douglas preferences constitute an important special case where the

assumption is fulfilled.
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(0, 3, 0), co-ordinatewise quantile constancy would have to be violated. Imposing association implies

0.125 ≤ Pyz(WARP violated) ≤ 0.25.11 Imposing co-ordinatewise positive quadrant dependence

does not affect the bounds.

Co-ordinatewise quantile constancy point identifies Pyz(WARP violated) at its highest possible

level, and association refines away the lower half of the identified set. In particular, the first

assumptions imply spurious violations of WARP – the lower bound becomes strictly positive

even though the data were generated by rational consumers. Our example indicates that in the

multiple goods case, apparently reasonable assumptions may be at tension with WARP; we see

this as cautionary advice for users who wish to use specifications of this type in nonparametric

analysis of demand. The intuitive reason why the example can be constructed is that the ordering

of consumers that is maintained – at least in some stochastic sense – is simply not relevant for

the Fréchet-Hoeffding problem.

3 Hypothesis Tests and Confidence Intervals

Estimation of the bounds developed in this paper presents a relatively routine nonparametric

estimation problem. Inference, however, raises a number of conceptual and technical issues that

are the subject of a currently active literature, notably (for our purposes) Andrews and Soares

(2010), Imbens and Manski (2004), and Stoye (2009). To tackle these, we continue to assume

continuity of relevant population distributions, and we also focus on worst-case Fréchet bounds.

Thus, we use corollary 2 to construct estimators and confidence regions for parameters of interest

θyz ∈ Θyz = [max{πyz − ψyz, 0},min{πyz, 1− ψyz}] ,

where

πyz = Pyz(Qs < (yt − ys)/(pt − ps))

ψyz = Pyz(Qt < (yt − ys)/(pt − ps)).

We will estimate Θyz by the plug-in estimator

Θ̂yz =
[
max

{
π̂yz − ψ̂yz, 0

}
,min

{
π̂yz, 1− ψ̂yz

}]
,

where the estimators
(
π̂yz, ψ̂yz

)
are defined below. The resulting inference problem is somewhat

intricate and of interest in its own right for users who wish to apply Fréchet-Hoeffding bounds in

11This claim is established in the online appendix.
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other contexts. Some issues are as follows. First, should a confidence region cover the identified

set, i.e. the relevant coverage probability is P(Θyz ⊆ CI1−α), or should it cover the partially

identified parameter, i.e. the relevant coverage probability is infθyz∈Θyz P(θyz ∈ CI1−α)? The

answer plainly depends on what is conceived as the quantity of interest. Both approaches have

been pursued in the literature. The empirical application will employ confidence regions for θyz,

but we develop both types.

Second, some “naive” confidence regions will suffer from known problems with inference on

moment inequalities. Identification through Fréchet bounds is an instance of identification through

moment inequalities because

max{πyz − ψyz, 0} ≤ θyz ≤ min{πyz, 1− ψyz}

is equivalent to the conjunction of

πyz − ψyz − θyz ≤ 0 (3.1a)

−θyz ≤ 0 (3.1b)

θyz − πyz ≤ 0 (3.1c)

θyz − 1 + ψyz ≤ 0. (3.1d)

Confidence intervals will be lower contour sets of a test statistic that aggregates violations of sample

versions of these inequalities. The limiting distribution of this statistic depends on which – if any

– inequalities bind, and its distribution for a given, finite sample size can also be influenced by

inequalities that are close to binding. It is not possible to pre-estimate the identities of the binding

inequalities, or the slackness of the non-binding ones, with sufficient precision for such a “model

selection” step to be ignorable. We resolve this by using conservative pre-tests. Conceptually, this

method is by now well understood, including results for very general settings. By exploiting the

specific structure of the present problem – e.g., the knowledge that at least one of (3.1a-3.1b) and

one of (3.1c-3.1d) bind and the fact that (3.1b) is a nonnegativity constraint –, we can however

improve on mechanical application of existing approaches. In addition, confidence regions for θyz

(as opposed to Θyz) may encounter specific problems if Θyz is short, that is, if the binding one of

(3.1a-3.1b) and the binding one of (3.1c-3.1d) are close to each other. This issue received close

attention in Imbens and Manski (2004) and Stoye (2009) and will be taken care of.

Finally, (πyz, ψyz) are probabilities, hence asymptotic normality of estimators will not hold in a

uniform sense if at least one of {πyz, ψyz} approaches 0 or 1. This problem necessitates numerous

case distinctions, making for confidence regions that appear quite involved. However, inference is

in some sense easier in these boundary cases because estimators of (near) degenerate probabilities
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are superefficient. We are, therefore, able to deal with these issues without making confidence

regions larger than is standard for nonparametrically estimated parameters.

3.1 Estimation

We first establish some properties of estimators
(
π̂yz, ψ̂yz

)
of marginal probabilities (πyz, ψyz). In

particular, these will be Nadaraya-Watson estimators applied to the model

Wi ≡ 1{Qis < (yt − ys)/(pt − ps)} = πyz + ηi,

where 1{.} denotes the indicator function, or of course the same model with (ψyz, t) replacing

(πyz, s). Thus, the estimator as a function of (ys, yt, z) is

π̂yz =

∑
iK ((Yis − ys,Zi − z) /h) · 1{Qis < (yt − ys)/(pt − ps)}∑

iK ((Yis − ys,Zi − z) /h)

and similarly for (ψyz, t). In this model, V ar(ηi|Zi = z, Yi = y) = Ξyz = πyz(1 − πyz). If πyz

is not close to {0, 1}, asymptotic normality of these estimators is standard. However, it will be

crucial to understand the behavior of this estimator also in situations where πyz is close to 0.

Consider, therefore, the possibility that πyz = πn → 0 as n → ∞; note that to limit the number

of subscripts, we here drop the conditioning variables from notation. We will focus on the case

where πn = cyzn
−β with 0 < c ≤ cyz ≤ c < ∞ for all (y, z) and 0 ≤ β ≤ 1 − ε. (The case of

πn → 1 is covered analogously. Also, recall that ψyz is just πyz evaluated at a different point.) We

will impose the following primitive assumptions on the d.g.p. and on our kernel K.

Assumption 2. (i) (Yi,Zi)i=1,...,n is an independent and identical sequence of d-dimensional

random vectors drawn from FY Z.

(ii) (Yi,Zi) is continuously distributed with common density fY Z, where fY Z is bounded and

fY Z(z) > 0 ∀(y, z).

(iii) The function cyz (hence, πn or ψn) is twice continuously differentiable with uniformly

bounded Hessian H (cyz).

(iv) K is symmetric about 0 (hence,
∫
uK(u)du = 0), K ≥ 0,

∫
K(u)du = 1, and κ2 ≡∫

K2(u)du <∞.

(v) hn → 0, n1−βhd →∞.

(vi) n1−βhd+4 → 0.

Note that the boundedness restriction (iii) is not as restrictive in this scenario. Also, the below

result requires that E(|η|2+δ
i |Yi = y,Zi = z) is finite for some δ > 0, but this obtains trivially

because the dependent variable takes values in {0, 1}. We then have:
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Lemma 3.1. Let the model be as defined above, and let Assumption 2 hold. Then:

φnσ
−1
n

(
π̂yz − πn − h2n−β

κ2

2
ι′H (cyz) ι

)
d→ N (0, 1),

where φn =
√
nhd, ι is a conformable vector of ones, κ2 =

∫
K(t)2dt, and σn =

√
cyzn−β. In

addition, let σ̂yz =
√
π̂yz(1− π̂yz), then σ̂yz/σn

p→ 1.

Inference will be based on this lemma applied to both π̂yz and ψ̂yz and the observation that

asymptotically, these two estimators are distributed independently of each other. An important

implication of the lemma is that the asymptotic variance of π̂yz (i.e., σ2
n) is of order O(φnn

−β).

Hence, π̂yz is superefficient relative to the usual nonparametric rate φn; furthermore, if πn → 0

and ψn → 0 but the latter vanishes at a faster rate, then ψ̂yz is superefficient relative to π̂yz. At

the same time, as long as they do not vanish too quickly, all of these estimators will be asymp-

totically normal. In particular, for πn → 0 but slowly enough, one has both superefficiency and

asymptotic normality. Intuitively, the former holds because the constant term of the asymptotic

variance vanishes as the probability in question converges toward zero; the latter holds because

this convergence is slow enough so that the number of successes sampled diverges.12 Since we are

concerned with small and moderate values of the probabilities in our application (as opposed to

values that are almost exactly zero), we feel that this is the relevant asymptotic approximation

(which also contains nonvanishing probabilities case as special case). A useful feature of this first

order asymptotic is that it preserves the standard nonparametric asymptotics with the exception

of the factor φn. While the rate is not a fundamental issue for deriving bootstrap version of

the confidence bands, we have to place particular emphasis on removing the bias, i.e., perform

undersmoothing as the mean square optimal bandwidth is excluded; see Horowitz (2001) for a

lucid discussion as well as application. Note finally that because σ̂yz/σn
p→ 1, estimation of σ2

n

effectively allows for rate-adaptive inference in cases of superefficiency. Indeed, because we will

undersmooth our estimators, we can base inference on roots that are asymptotically pivotal.

3.2 Inference

This subsection also makes prominent use of moving parameters, which will continue to be denoted

with subscripts n. We also omit conditioning on (Y,Z) from notation throughout for readability.

12For a slightly more formal intuition, consider simple sample probabilities as estimators of corresponding popu-

lation probabilities π. Then superefficiency (relative to root-n-convergence) for moving parameters πn → 0 follows

immediately from inspection of the sample variance πn(1−πn)/n. At the same time, inspection of the Berry-Esseen

bounds or the conditions for triangular array Central Limit Theorems reveals that for the same simple probabili-

ties, asymptotic normality will obtain as long as nπn →∞. Lemma 3.1 essentially states that our nonparametric

estimators behave sufficiently similarly to sample probabilities in the limit for this observation to carry over.
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Following the moment inequalities literature, we use θ0 and Θ0 to denote the true (partially

identified) value of θ and its true identified set.

The inference problem would be relatively straightforward if estimators of the upper and lower

bounds were jointly normal. In this case, a confidence region for Θ0 can be defined by projecting

a joint confidence region for the upper and lower bound. If one also knows that the interval Θ0 is

long relative to standard errors, one could furthermore use Imbens and Manski’s (2004) confidence

region for θ0. Specifically, a 90%-confidence region for Θ0 would also be a 95%-confidence region

for θ0 because one effectively encounters one-sided testing problems or confidence intervals at each

end of the interval Θ0. Things are not as simple here for a number of reasons:

(i) Estimators
(
ψ̂, π̂

)
need not be uniformly asymptotically normal, specifically not if one of

the true values (ψ, π) is local to zero. This problem is much ameliorated by the fact that whenever

it occurs, the corresponding probability is estimated superefficiently.

(ii) Even if
(
ψ̂, π̂

)
are uniformly asymptotically normal, this property is not inherited by

estimators of upper and lower bounds because these are maxima respectively minima between two

other estimators. Thus, their limit distribution is not normal if both of those estimators converge

to the same value, and they will fail to be uniformly asymptotically normal even if these cases

(but not neighborhoods around them) are excluded.

(iii) Θ0 might be of the same order or smaller than sampling error, in which case Imbens and

Manski’s (2004) approach does not in general work. This problem has been analyzed in depth by

Stoye (2009), ideas of whom are used in the following.

All of these cases can be taken care of by conservative pre-tests, i.e. pre-tests whose size

approaches 1 as sample size expands. On an abstract level, this applies ideas that are by now well

understood (e.g., Andrews and Soares (2010)), but we can substantially improve on mechanical

application of these ideas by exploiting the specific structure of our problem. A particularly

important insight is that the length of the identified set Θ0 equals

∆ = min{π, 1− ψ} −max{π − ψ, 0} = min{π, 1− π, ψ, 1− ψ}.

This means that ∆ is local to zero iff min{π, 1−π, ψ, 1−ψ} is local to zero, in which case min{π, 1−
π, ψ, 1 − ψ}, and therefore ∆, is (implicitly) estimated superefficiently. Regarding problem (iii),

we are therefore in a situation quite similar to the favorable case of local superefficiency of ∆̂

discussed in Stoye (2009).

That said, taking care of all of the above difficulties requires numerous case distinctions. Thus,

let

(Z1, Z2) ∼ N

([
0

0

]
,

[
σ̂2
π 0

0 σ̂2
ψ

])
.
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The cutoff values that define the confidence intervals will be specified in terms of (Z1, Z2). Re-

statements in terms of integrals of standard normal c.d.f.’s would be possible but tedious. Also,

let an be a pre-specified sequence s.t. an → 0 but φnan → ∞. Also, set the sequences bn and cn

s.t. cn = o(bn), bn = o(φ−1
n ), and lemma 3.1 applies if πn = O(cn).13 Then:

Definition 5. Confidence Region for Θ0

If min
{
π̂, 1− ψ̂

}
< cn, then

CI1−α(Θ) = CI1
1−α(Θ) ≡ [0, cn +

√
cn/φn · Φ−1(1− α/2)]. (3.2)

Else, if min
{
π̂, 1− ψ̂

}
> 1− bn, then

CI1−α(Θ) = CI2
1−α(Θ) ≡ [1− bn −

√
2bn/φn · Φ−1(1− α/2), 1]. (3.3)

Else, if ψ̂ < cn, then

CI1−α(Θ) = CI3
1−α(Θ) ≡

[
π̂ − ψ̂ − c1−α/2σ̂πφ

−1
n , π̂ + c1−α/2σ̂πφ

−1
n

]
, (3.4)

where c1−α/2 = Φ−1 (1− α/2).

Else, if π̂ > 1− cn, then

CI1−α(Θ) = CI4
1−α(Θ) ≡

[
π̂ − ψ̂ − c1−α/2σ̂ψφ

−1
n , 1− ψ̂ + c1−α/2σ̂ψφ

−1
n

]
. (3.5)

Else, if π̂ − ψ̂ > −an, let (cl, cu) minimize (cl + cu) subject to the constraint that

P(Z1 ≥ −cu, Z1 − Z2 ≤ cl) ≥ 1− α if π̂ < 1− ψ̂ − an,

P(Z2 ≤ cu, Z1 − Z2 ≤ cl) ≥ 1− α if π̂ > 1− ψ̂ + an

P(Z1 ≥ −cu, Z2 ≤ cu, Z1 − Z2 ≤ cl) ≥ 1− α otherwise.

(3.6)

Then

CI1−α(Θ) = CI5
1−α(Θ) ≡

[
π̂ − ψ̂ − φ−1

n cl,min
{
π̂, 1− ψ̂

}
+ φ−1

n cu
]
∩ [0, 1]. (3.7)

If none of the above apply, define cu by

P(Z1 ≥ −cu) ≥ 1− α if π̂ < 1− ψ̂,

P(Z2 ≤ cu) ≥ 1− α if π̂ > 1− ψ̂,

P(Z1 ≥ −cu, Z2 ≤ cu) ≥ 1− α otherwise

(3.8)

and let

CI1−α(Θ) = CI6
1−α(Θ) ≡

[
0,min

{
π̂, 1− ψ̂

}
+ φ−1

n cu
]
. (3.9)

13All of these sequences are tuning parameters that play the role of the tuning parameter κ in Andrews and

Soares (2010). Optimal choice for such parameters is an area of current research.
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The construction is probably best understood by inspecting the last (simplest) case first,

which projects a simultaneous confidence set for the upper and lower bound, whose size will then

extend to Θ0 by convexity. Problem (ii) is resolved by conservative pre-tests reflected in the case

distinctions in (3.6), (3.8), and the case distinction separating those cases. Problem (i) is handled

by the earlier case distinctions. Problem (iii) does not apply to this confidence set. The confidence

region for θ0 uses the above ideas but also handles problem (iii) by using ideas from Stoye (2009)

and the above observation about ∆.

Definition 6. Confidence Region for θ0

If min
{
π̂, 1− ψ̂

}
< cn, then CI1−α(θ) = CI1

1−α(Θ).

Else, if min
{
π̂, 1− ψ̂

}
> 1− bn, then CI1−α(θ) = CI2

1−α(Θ).

Else, if ψ̂ < cn, then

CI1−α(θ) = CI3
1−α(θ) ≡

[
π̂ − ψ̂ − c1−ασ̂πφ

−1
n , π̂ + c1−ασ̂πφ

−1
n

]
, (3.10)

where c1−α fulfils

Φ(c1−α)− Φ
(
−c1−α − σ̂−1

π φnψ̂
)

= 1− α.

Else, if π̂ > 1− cn, then

CI1−α(θ) = CI4
1−α(θ) ≡

[
π̂ − ψ̂ − c1−ασ̂ψφ

−1
n , 1− ψ̂ + c1−ασ̂ψφ

−1
n

]
,

where c1−α fulfils

Φ(c1−α)− Φ
(
−c1−α − σ̂−1

π φn(1− π̂)
)

= 1− α. (3.11)

Else, let ∆̂ = min
{
π̂, 1− ψ̂

}
−max

{
π̂ − ψ̂, 0

}
. If π̂− ψ̂ > −an, let (cl, cu) minimize (cl + cu)

subject to the constraint that

P
(
−cu − φn∆̂ ≤ Z1 − Z2 ≤ cl

)
≥ 1− α

and that

P
(
−cu ≤ Z1 ≤ cl + φn∆̂

)
≥ 1− α if π̂ < 1− ψ̂ − an

P
(
−cl − φn∆̂ ≤ Z2 ≤ cu

)
≥ 1− α if π̂ > 1− ψ̂ + an

P
(
−cu ≤ Z1 ≤ cl + φn∆̂,−cl − φn∆̂ ≤ Z2 ≤ cu

)
≥ 1− α otherwise

.

Then

CI1−α(θ) = CI5
1−α(θ) ≡

[
π̂ − ψ̂ − φ−1

n cl,min
{
π̂, 1− ψ̂

}
+ φ−1

n cu
]
∩ [0, 1]. (3.12)

If π̂ − ψ̂ ≤ −an, then CI1−α(θ) = CI1−α(Θ).
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The interval is calibrated to have size (1−α) if θ0 coincides with either the lower or the upper

bound; it will be larger in between. Note the interval is not calibrated to, and will generally fail to,

cover both bounds simultaneously with that probability. That is precisely the difference between

CI1−α(Θ) and CI1−α(θ), and is why the latter is shorter.

We then have:

Lemma 3.2. Let assumption 2 hold. Then:

lim
n→∞

P(Θ0 ⊆ CI1−α(Θ)) = lim
n→∞

inf
θ0∈Θ0

P(θ0 ∈ CI1−α(θ)) = 1− α

uniformly over (π, ψ) ∈ [0, 1]2.

4 Empirical Application:

WARP and the British Household Expenditure Survey

We now employ this paper’s framework on real world data, namely the Family Expenditure Survey

(FES), which was the basis for successful, recent applications of revealed preference approaches

(Blundell, Browning, Crawford (2003, 2008)). This section is structured as follows: We first

provide a description of the data. Then we present some econometric details. Finally, we display

the empirical results.

4.1 Description of the Data

The FES reports a yearly cross section of labor income, expenditures, demographic composition,

and other characteristics of about 7,000 households. We use the years 1974-1993, but exclude the

respective Christmas periods as they contain too much irregular behavior. As is standard in the

demand system literature, we focus on the subpopulation of two person households where both

are adults, at least one is working, and the head of household is a white collar worker. This is

to reduce the impact of measurement error; see Lewbel (1999) for a discussion. We provide a

summary statistic of our data in table 1 in the appendix.

We form several expenditure categories. The first category is related to food consumption

and consists of the subcategories food bought, food out (catering) and tobacco. The second

category contains housing expenditures, namely rent or mortgage payments and household goods

and services, excluding furniture. The last group consists of motoring and fuel expenditures. For

brevity, we call these categories food, housing and energy. These broader categories are formed

since more detailed accounts suffer from infrequent purchases (recall that the recording period
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is 14 days) and are thus often underreported. These three categories account for 20-30% of

total expenditure on average, leaving a fourth residual category. Results actually displayed were

generated by considering consumption of food versus nonfood items, but similar analyses were

performed for all of the goods, and with similar results. We removed outliers by excluding the

upper and lower 2.5% of the population in the three groups.

For the pairwise comparisons, we normalize prices by dividing all variables by the general

price index excluding the good into consideration (in particular, for food we consider the price

of food vs. the price of all nondurable goods except food). This removes both general inflation

and transforms all prices to be relative to the price index. Quantities are defined by dividing the

normalized expenditures by the respective normalized price, e.g. food by the food price index.

We also divide total expenditure by the price index.

To account for possible endogeneities, i.e. violations of assumption 1(ii), we use labor income

as an instrument. This is standard practise in the demand literature, see Lewbel (1999), and,

assuming the existence of preferences, is satisfied under an assumption of separability of the labor

supply from the consumer demand decision. Labor income is constructed as in the household

below average income study (HBAI), that is, it is roughly defined as labor income after taxes

and transfers. We include the remaining household covariates as regressors. Specifically, we use

principal components to reduce the vector of remaining household characteristics to a few orthog-

onal, approximately continuous components, mainly because we require continuous covariates for

nonparametric estimation. Since we already condition on a lot of household information by using

the specific subgroup, we only use the first principal component. While this is arguably ad hoc,

we perform some robustness checks like alternating the component or adding several others, and

results do not change appreciably.

4.2 Econometric Specification and Empirical Results

We estimate conditional probabilities (πyz, ψyz) via a locally linear estimator with a standard

Epanechnikov kernel. The bandwidth is selected by cross validation. We checked the sensitiv-

ity of our results by varying the bandwidth; there was no material effect on results. Sampling

distributions of φ
1/2
n

(
ψ̂yz − ψyz

)
and φ

1/2
n (π̂yz − πyz) were simulated by a wild hybrid bootstrap

(Shao and Tu (1995)). Specifically, we use the inverted c.d.f. of Fψ̂∗yz−ψ̂yz
, where ψ̂∗yz denotes the

bootstrap estimator and ψ̂yz the original estimator, to derive a consistent estimator for Fψ̂yz−ψyz
,

and similarly for π̂yz. For the estimator of the bounds, the bootstrap is known to be consistent

(see Hall (1992) or Horowitz (2001), for a general discussion). This is obvious in the case of non-

vanishing probabilities, but also applies to the few cases (2 out of 100) of vanishing probabilities,
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as the standard asymptotics are retained with the exception of the modified rate. As elaborated

before, we also assume that ψ̂yz and π̂yz are generated from independent samples.

When applying our local polynomial estimators to the choice data, we first group the population

into “bands” of three years, e.g., we collect all people surveyed in the years 1974-1976 into one

group. This is done to increase the number of observations. As a consequence, our cross sections

actually comprise 3 years, and we assume the individuals to face the mean price in this period.14

We then compare every cross section with the two adjacent ones only because for groups that are

many years apart, apparent violations of WARP could plausibly be driven by changing preferences.

Our first important finding is that for most such comparisons, the income change swamps the

price effect, leading to upper bounds of zero. This is easy to explain: The order of magnitude of

the relative price change is −0.05, while most quantities are around 10. Thus, the overall effect of a

price change on quantities is Ξts = (pt − ps)Qs ≈ 0.5. Figure 2 provides a graphical representation

of the density of this effect in the second year (so the variable is Ξ22 = (p3 − p2)Q2, corresponding

to the years of 1978 and 1981).

Fig. 2 approx. here

The probability mass is highly concentrated between −1 and 0. In contrast, mean real income

increased in the same two periods from 50.4 to 54.3, and median income increased less dramatically

from 43.5 to 45.5. The typical case is that πyz = ψyz ∼= 0, so that Pyz(WARP violated) is

estimated as zero.15 We focus on regions in the data that are at least potentially informative,

as operationalized by a nonzero (estimated) upper bound on Pyz(WARP violated). For instance,

given the distribution of Ξ22, we focus on income changes that are between 0 and −1, i.e. on

subpopulations who become marginally poorer.16 More specifically, we form a 10 × 10 grid that

combines each of the (9, 18, ..., 90)-quantiles of the income distribution in the period (1977-1982)

with all of the income changes in (−1,−0.9, ...,−.1); see figure 2. This choice of subsample is

certainly ad hoc, and we leave to future research a more systematic treatment of the choice of

region for which the data is informative.

We start our analysis by forming confidence intervals. We set cn = 0.02 and bn = 0.2. The

14This induces a measurement error. Compared to the already incurred measurement error, and in light of the

fact that all that matters is the change in prices, we feel that this is a minor issue.
15The according confidence regions will include some strictly positive numbers, but then, recall that a confidence

region for a probability based on 0 successes in n trials will include some small but positive numbers for any n.
16To clarify, this des not amount to tracking specific individuals in our sample; after all, we do not have panel

data. But assumption 1(ii) ensures that in making the comparison, we compare different cross-sectional samples

from the same population. Of course, this illustrates that assumption 1(ii) is not innocuous; though, recall our use

of an instrument in this application.

27



near degenerate cases that our modified confidence region guards against are exceedingly rare in

the data: min
{
π̂yz, 1− ψ̂yz

}
< 0.02 occurs in 2 out of 100 positions, and we use the appropriate

CI; the cases min
{
π̂yz, 1− ψ̂yz

}
> 0.8, ψ̂yz < 0.02, and 1− π̂yz > 0.98 do not appear. Degenerate

probabilities are therefore not much of an issue, and we essentially apply the confidence region

defined in (3.12). Still, we have to distinguish two cases, one where we have reason to believe that

the lower bound is exactly zero because π̂yz − ψ̂yz is strongly negative, and one where we cannot

rule out that πyz − ψyz ≥ 0 is the binding constraint at the lower bound. The cut off we take is

an = −.1. Thus, if π̂yz − ψ̂yz < −.1, then we consider the lower bound to be exactly zero. Recall

from section 3 that this leads to a simplification; intuitively, if the lower bound is nonstochastic

(i.e., exactly 0), then all randomness arises from the upper bound being stochastic and we only

have to control coverage at the upper end.

Rather than presenting 100 confidence intervals, we show densities for both the upper and

lower bounds as well as densities for the associated confidence intervals. As we detail below, the

reason for us to proceed in this fashion is that the point estimate of the lower bound, and hence

also the lower end of the confidence interval, is mostly close to zero. In particular, high point

estimates of upper bounds are only weakly associated with high estimates of lower bounds, hence

not much is lost by looking the bounds in isolation. Figures 3-5 display our results for the upper

bound in our subsample. We start with the distribution of the point estimate:

Fig. 3 approx. here

The estimated upper bound exceeds 1% in 97 out of the 100 points of support of the regressors

and exceeds 5% (the threshold indicated by the vertical line) in 80 cases. To construct the upper

ends of the confidence intervals for the parameter, we have to jump a final hurdle, namely to take

precautions regarding whether one or both restrictions bind. Therefore we pre-test for equality

of πyz and (1− ψyz) with critical value an = .1. If equality is rejected, we form a standard 95%

confidence band for whichever of πyz and (1− ψyz) appears smaller; if it is not rejected, we form

joint confidence sets, which are effectively 97.5% for either parameter because πyz ≈ (1− ψyz) in

these cases. Figure 4 shows the distribution of the upper bound and that of the upper end of the

appropriate bootstrap CI around the upper bound.

Fig. 4 approx. here

Thus, the data appear potentially informative about WARP, and as the confidence intervals for

the parameters indicate, there might be rejections of rationality. Whether we can positively

tell with any degree of certainty that there are violations remains a question that can only be
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answered by considering the lower bound. Before we do this, we want to clarify whether we have

positive evidence that the data is informative. Therefore, to check whether the positive values

are statistically significant, we use lemma 3.2 to compute a lower confidence bound for the upper

bound, i.e., when constructing the confidence intervals we allow again for the possibility of both

upper bound constraints binding simultaneously.

We indeed find that many of the positive upper bounds are statistically significant. In 84 out

of 100 cases, the lower confidence interval is above 0.01. The mean and median of the upper bound

are 0.177 respectively 0.146. More than a third of cases are above 0.25, while the 95% bootstrap

CI usually has length between 0.10 and 0.15. Figure 5 shows the distribution of the upper bound

and that of the lower end of the 95% bootstrap CI around the upper bound.

Fig. 5 approx. here

While these numbers should be interpreted with care due to our failure to control familywise

error rates, they do suggest that the data are reasonably informative – in the sense of allowing

for potential violation of WARP – in this selected subpopulation. They also allow for a sizable

fraction of the population to violate rationality. Still, figure 6 illustrates that we find hardly any

conclusive evidence against WARP.

Fig. 6 approx. here

The lower bound is typically close to zero even in this informative subpopulation; it exceeds 0.05

in only 1 out of 100 instances. What is more, one-sided 95% bootstrap confidence intervals for

πyz − ψyz, constructed in accordance with lemma 3.2, include zero at 97 of 100 positions on our

grid. Hence, we cannot statistically distinguish the positive lower bounds from zero even with

confidence regions that fail to control familywise error rates.

We now showcase the effect of one of the refinements discussed in section 2. Specifically, we

impose positive quadrant dependence (PQD; see section 2.1.3). The refined bounds are illustrated

in figure 7, and figure 8 shows through a comparison the effect of the introduction of PQD on the

distribution of the upper bound.

Figs. 7, 8 approx. here

As explained in section 2, PQD will not induce refined upper bounds of zero unless worst-case

upper bounds were zero, however the upper bounds are much reduced, typically by 50−75%. The

highest possible proportion of “violators” is substantially reduced and exceeds 20% only at very

select data points. Having said that, most of the positive bounds are statistically significant, with

29



many p-values being small enough that controlling for familywise error rates would not overturn

this conclusion. Hence, the data are still consistent with some violations of WARP. Lower bounds

on Pyz(WARP violated) remain zero because in the two-dimensional case, PQD refines worst-case

bounds from above but not below; recall that this is not true for natural generalizations of it in

the higher dimensional case. All in all, PQD substantially narrows the bounds, although in the

two-good case, it cannot lead to rejection of rationality if worst-case bounds did not warrant that

conclusion already.

None of these results change appreciably if we include a measure of household characteristics

and/or correct for endogeneity using a control function approach. Moreover, they are stable across

the large groups of goods we consider, for pairwise comparisons (e.g., energy vs. non-energy). In

summary, we tend to think that at least as a reasonable approximation to behavior, WARP is

more corroborated than questioned by these data, but we would like to emphasize the need for

further research with other data.

5 Conclusion

This paper investigated exactly what power revealed preference assumptions have under realistic

data constraints. The leading question was to bound the fraction of a population that violates

WARP given repeated cross-section data. Side results were to elucidate the exact empirical content

of WARP and to carry out an inference exercise that applies recent insights about inference under

partial identification. The empirical result with respect to the U.K. Family Expenditure Survey is

that even for those observations where budget planes meaningfully overlap, as reflected by large

upper bounds on the probability of violating WARP, lower bounds are not significantly positive,

i.e. WARP cannot be rejected. Furthermore, imposing a very weak, nonparametric limitation

on heterogeneity (namely, positive quadrant dependence with respect to budget shares spent on

different goods) leads to uniformly rather small, though not uniformly zero, upper bounds.

The core difference between this paper and existing work that estimates demand for applied

purposes is that we consider the revealed preference paradigm on individual level in isolation,

being careful to impose no or very weak homogeneity assumptions across individuals. This, of

course, leads to less conclusive results. While the data may be interpreted to be mildly supportive

of WARP, this could certainly be due not to the population being substantively rational, but to

the weak axiom being, well, weak. To be sure, we do not mean to implicitly criticize other papers,

but rather to augment them by showing how much mileage can be gained from revealed preference

assumptions proper. Thus, our motivation is somewhat similar to early papers on partial iden-

tification of treatment effects, which frequently stress the conceptual value of understanding just
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how much one could learn from the data without identifying assumptions. Insofar as the result is

somewhat negative, the substantive message might well corroborate approaches that use stronger

assumptions. We hope, however, to illuminate the degree to which sharper conclusions than ours

will depend on using sharper assumptions, whether or not these assumptions are formally semi-

or nonparametric.
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Appendix I - Summary Statistics of Data: Household Char-

acteristics, Income and Normalized Expenditures

Variable Minimum 1st Quartile Median Mean 3rd Quartile maximum

number of female 0 1 1 1.073 1 2

number of retired 0 0 0 0.051 0 1

number of earners 0 1 2 1.692 2 2

Age of HHhead 19 31 49 46 58 90

Fridge 0 1 1 0.987 1 1

Washing Machine 0 1 1 0.882 1 1

Centr. Heating 0 1 1 0.804 1 1

TV 0 1 1 0.874 1 1

Video 0 0 0 0.407 1 1

PC 0 0 0 0.792 0 1

number of cars 0 1 1 1.351 2 10

number of rooms 1 4 5 5.455 6 26

HHincome 6.653 37.550 52.210 61.820 73.920 3981.000

Food 0 5.565 7.346 7.867 9.602 52.519

Housing 0 4.052 7.859 9.715 12.910 375.486

Energy 0 1.271 1.812 2.121 2.509 34.103
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Appendix II - Proofs

Proposition 1 Recall the Fréchet-Hoeffding bounds: For any two random variables X1 and X2

and events (in the relevant algebras) A1 and A2, one has the tight bounds

max{P(X1 ∈ A1) + P(X2 ∈ A2)− 1, 0} ≤ P(X1 ∈ A1, X2 ∈ A2) ≤ min{P(X1 ∈ A1),P(X2 ∈ A2)}.

To see validity of the lower bound, note that

Pyz(WARP violated)

= Pyz(Qs ≤ (yt − ys)/(pt − ps), Qt ≥ (yt − ys)/(pt − ps), Qs 6= Qt)

= Pyz(Qs ≤ (yt − ys)/(pt − ps), Qt ≥ (yt − ys)/(pt − ps))−

Pyz(Qs ≤ (yt − ys)/(pt − ps), Qt ≥ (yt − ys)/(pt − ps), Qs = Qt)

= Pyz(Qs ≤ (yt − ys)/(pt − ps), Qt ≥ (yt − ys)/(pt − ps))− Pyz(Qs = Qt = (yt − ys)/(pt − ps))

≥ max {Pyz(Qs ≤ (yt − ys)/(pt − ps))− Pyz(Qt < (yt − ys)/(pt − ps)), 0} −

min {Pyz(Qs = (yt − ys)/(pt − ps)),Pyz(Qt = (yt − ys)/(pt − ps))} ,

where the first equality spells out the event that WARP is violated, the next two steps use

basic probability calculus, and the last step uses the lower Fréchet-Hoeffding bound on Pyz(Qs ≤
(yt − ys)/(pt − ps)), Qt ≥ (yt − ys)/(pt − ps)) as well as the upper Fréchet-Hoeffding bound on

Pyz(Qs = Qt = (yt − ys)/(pt − ps)). The expression in the lemma is generated by taking the

maximum between the last expression and zero, observing that this renders redundant the max-

operator in the preceding display.

The bound is tight because a joint distribution of (Qs, Qt) that achieves it can be constructed as

follows: First, assign probability min {Pyz(Qs = (yt − ys)/(pt − ps)),Pyz(Qt = (yt − ys)/(pt − ps))}
to the event (Qs = Qt = (yt − ys)/(pt − ps)). Second, remove this probability mass from the

marginal distributions of (Qs, Qt) and rescale them so they integrate to 1. Third, the joint distri-

bution of (Qs, Qt|Qs = Qt = (yt − ys)/(pt − ps) does not hold) is characterized by those rescaled

marginal distributions and the Fréchet-Hoeffding lower bound (perfectly positive dependence)

copula.

To see validity of the upper bound, note that

Pyz(WARP violated) ≤ min {Pyz(Qs ≤ (yt − ys)/(pt − ps)),Pyz(Qt ≥ (yt − ys)/(pt − ps))}
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by the upper Fréchet-Hoeffding bounds and furthermore that

Pyz(WARP violated)

= Pyz((Qs ≤ (yt − ys)/(pt − ps), Qt > (yt − ys)/(pt − ps))

or (Qs < (yt − ys)/(pt − ps), Qt ≥ (yt − ys)/(pt − ps)))

≤ 1− Pyz(Qs ≥ (yt − ys)/(pt − ps), Qt ≤ (yt − ys)/(pt − ps))

≤ 1−min {Pyz(Qs ≥ (yt − ys)/(pt − ps)),Pyz(Qt ≤ (yt − ys)/(pt − ps))}

= max {Pyz(Qs < (yt − ys)/(pt − ps)),Pyz(Qt > (yt − ys)/(pt − ps))} ,

where all equalities and the first inequality use basic probability calculus and the second inequality

utilizes a lower Fréchet-Hoeffding bound on Pyz(Qs ≥ (yt− ys)/(pt− ps), Qt ≤ (yt− ys)/(pt− ps)).
To see that the bound is tight, note that it is achieved by the Fréchet-Hoeffding upper bound

(perfectly negative dependence) copula. Intermediate values can be attained by mixing the two

distributions that achieve the bounds.

Lemma 2.2 Assume positive quadrant dependence. Recall that Bs,t is a lower contour set and

Bt,s an upper one, hence

Pyz(Qs /∈ Bs,t,Qt ∈ Bt,s) ≥ Pyz(Qs /∈ Bs,t)Pyz(Qt ∈ Bt,s),

hence

Pyz(Qs ∈ Bs,t,Qt ∈ Bt,s) = Pyz(Qt ∈ Bt,s)− Pyz(Qs /∈ Bs,t,Qt ∈ Bt,s)

≤ Pyz(Qt ∈ Bt,s)− Pyz(Qs /∈ Bs,t)Pyz(Qt ∈ Bt,s)

= (1− Pyz(Qs /∈ Bs,t))Pyz(Qt ∈ Bt,s) = Pyz(Qs ∈ Bs,t)Pyz(Qt ∈ Bt,s).

The refined lower bound for (ii) is established similarly. The old lower and upper bounds are tight

because the distributions that generate them are consistent with positive respectively negative

quadrant dependence. The bounds at Pyz(Qs ∈ Bs,t)Pyz(Qt ∈ Bt,s) are tight because independence

of Qs and Qt cannot be excluded.

Example 3 The first and third claim are easy to see, we will establish the one regarding asso-

ciation. To see the lower bound, let U ≡ {q : (1, 2, 1) · q ≥ 5.1}, then U contains a1, a2, and b2
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but not a2 or b1. Now write

Pyz(Q1 ∈ U,Q2 ∈ U) ≥ Pyz(Q1 ∈ U)Pyz (Q2 ∈ U)

⇐⇒ Pyz(Q2 ∈ U |Q1 ∈ U) ≥ Pyz (Q2 ∈ U)

⇐⇒ Pyz(Q2 /∈ U |Q1 ∈ U) ≤ Pyz (Q2 /∈ U)

⇐⇒ Pyz(Q2 /∈ U |Q1 /∈ U) ≥ Pyz (Q2 /∈ U)

⇐⇒ Pyz(Q2 = b1|Q1 = a2) ≥ Pyz (Q2 = b1) = 1/2,

implying the claim. The bound is tight because association allows for independence.

Lemma 3.1 Throughout this proof, we denote by Y = (Y1..., Yn), Z = (Z1..., Zn) and y, z denote

a fixed position. Following standard arguments for local polynomials (e.g., Fan and Gijbels (1996)),

we obtain for the bias

E [π̂yz − πn|Y,Z] = h2n−β
κ2

2
ι′H (cyz) ι+ op(h

2).

The variance requires a bit more care. We decompose the estimator into bias and variance part,

i.e.: π̂(y, z) − π(y, z) =
∑

iWin(ηi + biasi), where Win are weights, see Fan and Gijbels (1999).

Next, consider

V ar [π̂yz(y, z)|Y,Z] = E
[
(π̂yz − πn)2 |Y,Z

]
= E

[∑
j

∑
i

WinWjnηiηj|Y,Z

]

+2E

[∑
j

∑
i

WinWjnηibiasj|Y,Z

]

+E

[∑
j

∑
i

WinWjnbiasibiasj|Y,Z

]
= T1 + T2 + T3

Observe that T2 = 0 by iterated expectations, and T3 = op(T1). Finally,

E

[∑
j

∑
i

WinWjnηiηj|Y,Z

]
=
∑
i

W 2
inE
(
η2
i |Yi = y, Zi = z

)
= n−β

∑
i

W 2
incyizi .

Then, by standard arguments,
∑

iW
2
incyizi = n−1h−dκ2cyz +op((nh)−1), and the statement follows

by a CLT for triangular arrays, see again Fan and Gijbels (1996).

35



To see that π̂yz/πn
p→ 1 (and hence σ̂yz/σn

p→ 1), observe that

π̂yz − πn
πn

=

√
nhdnβ

πn
√
nhdnβ

(π̂n − πn) =
1

cyz
√
nhdn−β

√
nhdnβ (π̂yz − πn)︸ ︷︷ ︸

≡A

,

where the second step follows by substituting for πn = cyzn
−β. By the lemma’s main claim, A is

stochastically bounded, thus n1−βhd →∞ implies (π̂yz − πn) /πn
p→ 0 and hence the claim.

Lemma 3.2 We establish the uniform result by showing a pointwise one but in moving pa-

rameters (πn, ψn), implying the uniform result because the pointwise finding can be applied to

a least favorable sequence. Also, we will make a finite number of case distinction depending on

whether parameters are “large” or “small” in senses that will be defined. Every sequence can be

partitioned into finitely many subsequences s.t. each subsequence conforms to one case below.

We first establish a number of lemmas showing that the different versions of CI1−α(Θ) are

valid under different sets of conditions.

Lemma A.1. Assume that min {πn, 1− ψn} /cn → 0. Then limn→∞ P(Θ0 ⊆ CI1
1−α(Θ)) = 1.

Proof.

Θ0 = [max{πn − ψn, 0},min{πn, 1− ψn}] ⊆ [0,min{πn, 1− ψn}] ⊆ [0, cn] ⊂ [0, CI1
1−α(Θ)].

Lemma A.2. Assume that (1− πn) /2bn → 0 and ψn/2bn → 0. Then limn→∞ P(Θ0 ⊆
CI2

1−α(Θ)) = 1.

Proof. Noting that πn − ψn = 1− (1− πn)− ψn ≥ 1− bn for n large enough, write

Θ0 = [max{πn − ψn, 0},min{πn, 1− ψn}] ⊆ [1− bn, 1] ⊂ CI2
1−α(Θ).

Lemma A.3. Assume that φnσπ (π̂ − πn)
d→ N (0, 1), that φnσπ

(
ψ̂ − ψn

)
p→ 0, and that

σ̂π/σπ → 1. Then limn→∞ P(Θ0 ⊆ CI3
1−α(Θ)) = 1− α.

36



Proof. Write

lim
n→∞

P(Θ0 ⊆ CI3
1−α(Θ))

= lim
n→∞

P
(
π̂ − ψ̂ − c1−ασ̂πφ

−1
n ≤ πn − ψn, πn ≤ π̂n + c1−ασ̂πφ

−1
n

)
= lim

n→∞
P
(
φnσ̂π

(
π̂ − πn −

(
ψ̂ − ψn

))
≤ c1−α, φnσ̂π (π̂n − πn) ≥ −c1−α

)
= lim

n→∞
P (−c1−α ≤ φnσ̂π (π̂ − πn) ≤ c1−α)

= 1− α.

where the last step uses the definition of c1−α and this lemma’s assumptions.

Lemma A.4. Assume that φnσψ

(
ψ̂ − ψn

)
d→ N (0, 1), that φnσψ (π̂ − πn)

p→ 0, and that σ̂ψ/σψ →
1. Then limn→∞ P(Θ0 ⊆ CI4

1−α(Θ)) = 1− α.

Proof. This mimics lemma A.4.

Lemma A.5. Assume that
[
φnσπ (π̂ − πn) , φnσψ

(
ψ̂ − ψn

)]
d→ N (0, I2), that σ̂π/σπ → 1,

and that σ̂ψ/σψ → 1. Then limn→∞ P(Θ0 ⊆ CI1−α(Θ)) = 1− α.

Proof. This case requires two sub-distinctions amounting to four distinct sub-cases, accord-

ing to which of (3.1a-3.1d) must be presumed to (almost) bind. Let εn be a sequence s.t. εn → 0,

εn/φn →∞, but εn/an → 0. First, assume that πn−ψn ≥ −εn, meaning that (3.1a) must be taken

into account. Then CI1−α(Θ) will be constructed according to (3.6-3.7) with probability approach-

ing 1, thus it suffices to show validity of this construction. Assume first that |π + ψ − 1| ≤ εn,

thus
∣∣∣π̂ + ψ̂ − 1

∣∣∣ ≤ εn with probability approaching 1. We can then write

lim
n→∞

P(Θ0 ⊆ CI1−α(Θ)) = lim
n→∞

P

 max
{
π̂ − ψ̂ − φ−1

n cl, 0
}
≤ max{πn − ψn, 0},

min{πn, 1− ψn} ≤ min
{
π̂, 1− ψ̂

}
+ φ−1

n cu

 .

We bound the r.h. probability from below by observing some logical implications. First,

π̂ − ψ̂ − φ−1
n cl ≤ πn − ψn =⇒ max

{
π̂ − ψ̂ − φ−1

n cl, 0
}
≤ max{πn − ψn, 0}.

To see this, note that if πn−ψn ≥ 0, then the two inequalities are equivalent except if π̂−ψ̂−φ−1
n cl ≤

0, in which case they are both fulfilled. If πn − ψn < 0, then the l.h. inequality implies the r.h.

one because whenever the l.h. inequality holds, both sides of the r.h. inequality equal 0.
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Second,

min
{
π̂, 1− ψ̂

}
−min{πn, 1− ψn}

= min
{
π̂ −min{πn, 1− ψn}, 1− ψ̂ −min{πn, 1− ψn}

}
≥ min

{
π̂ − πn, ψn − ψ̂

}
.

Together, these implications yield

lim
n→∞

P(Θ0 ⊆ CI1−α(Θ))

≥ lim
n→∞

P
(
π̂ − ψ̂ − φ−1

n cl ≤ πn − ψn,min
{
π̂ − πn, ψn − ψ̂

}
≥ −φ−1

n cu
)

= lim
n→∞

P
(
π̂ − ψ̂ − φ−1

n cl ≤ πn − ψn, π̂ − πn ≥ −φ−1
n cu, ψ̂ − ψn ≤ φ−1

n cu
)

= lim
n→∞

P
(
φn

(
π̂ − πn −

(
ψ̂ − ψn

))
≤ cl, φn (π̂ − πn) ≥ −cu, φn

(
ψ̂ − ψn

)
≤ cu

)
= lim

n→∞
P
(
σπZ1 − σψZ2 ≤ cl, σπZ1 ≥ −cu, σψZ2 ≤ cu

)
= lim

n→∞
P
(
σ̂πZ1 − σ̂ψZ2 ≤ cl, σ̂πZ1 ≥ −cu, σ̂ψZ2 ≤ cu

)
≥ 1− α,

where the last steps use this lemma’s assumptions and condition (3.6).

Now, let πn − ψn < −εn. In this case, CI1−α(Θ) will be constructed according to (3.6-3.7)

with some probability and according to (3.8-3.9) with the remaining probability (which goes to 1

as πn−ψn becomes very small). In any case, construction (3.6-3.7) is by construction larger than

(3.8-3.9), thus it suffices to show the claim under the premise that construction (3.8-3.9) applies

with probability 1. The argument is similar to the above.

Proof of main result. Every sequence (πn, ψn) can be decomposed into subsequences s.t.

one of the above lemmas applies to each subsequence. The pre-tests are designed to use the ap-

propriate procedure depending on features of (πn, ψn). If (πn, ψn) is far away from the benchmark

sequences specified in the pre-tests, this match will be perfect and one of the above lemmas will

apply directly. If CI1−α(Θ) might oscillate between different procedures in the limit, some ad-

ditional argument is needed. To keep track of the 49 potential case distinctions, categorize the

possible subsequences as in the following table.
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1− ψn= . . . ψn= . . .

o(cn) O(cn) (other) O(bn) o(bn) O(cn) o(cn)

πn= . . . o(cn) 2 2 2 2 2 2 2

O(cn) 2 4 4 4 4 10 8

(other) 2 4 1 1 1 11 6

1− πn= . . . O(bn) 2 4 1 5 5 12 6

o(bn) 2 4 1 5 3 3 3

O(cn) 2 13 14 15 3 3 3

o(cn) 2 9 7 7 3 3 3

In this table, “other” refers to all sequences s.t. ψn > O(bn) and 1− ψn > O(cn) (respectively

the same for πn). In cases labelled 1, the baseline construction is valid and will be used with prob-

ability approaching 1. The same is true for CI1
1−α(Θ) in the cases labelled 2 and for CI2

1−α(Θ) in

the cases labelled 3. In cases labelled 4, CI1−α(Θ) may oscillate between constructions CI1
1−α(Θ)

and CI5
1−α(Θ). Note, though, that in these cases one will have CI5

1−α(Θ) ⊆ CI1
1−α(Θ) by construc-

tion and furthermore that lemma A.5 applies, thus CI1−α(Θ) is valid (if potentially conservative).

In case 5, an analogous argument applies but with CI2
1−α(Θ) and CI5

1−α(Θ). In case 6, one can

directly apply lemma A.3, and in case 7, the same holds for lemma A.4. In case 8, CI1−α(Θ) may

oscillate between CI1
1−α(Θ) and CI3

1−α(Θ), but CI3
1−α(Θ) ⊆ CI1

1−α(Θ) by construction and lemma

A.3 applies. A similar argument applies to case 9. In all of cases 10-12, CI3
1−α(Θ) and CI5

1−α(Θ)

are asymptotically equivalent. Validity in case 11, where CI1−α(Θ) ∈
{
CI3

1−α(Θ), CI5
1−α(Θ)

}
with

probability approaching 1, follows from lemma A.5. In cases 10 and 12, where the probability of

CI1−α(Θ) = CI1
1−α(Θ) (case 10) or CI1−α(Θ) = CI2

1−α(Θ) (case 12) fails to vanish, additional

argument along previous lines is needed. The analog argument holds for cases 13-15.

Consider now the claim that limn→∞ infθyz∈Θyz P(θyz ∈ CI1−α(θ)) = 1− α. The proof plan for

this is similar to the above, and we only elaborate steps that differ. In particular, lemmas A.1

and A.2 immediately imply the analogous result here. It remains to demonstrate the following.

Lemma B.3. Assume that φnσπ (π̂ − πn)
d→ N (0, 1), that φnσπ

(
ψ̂ − ψn

)
p→ 0, and that

σ̂π/σπ → 1. Then limn→∞ infθyz∈Θyz P(θyz ∈ CI3
1−α(θ)) = 1− α.

Proof. Again, with probability approaching 1 we have Θ0 = [πn − ψn, πn], ∆ = ψn, Θ̂ =[
π̂ − ψ̂, π̂

]
, and ∆̂ = min

{
π̂, 1− π̂, ψ̂, 1− ψ̂

}
= ψ̂, thus ∆̂ is superefficient relative to the rate of

convergence of π̂. Parameterizing the true parameter value as θ = πn − aψn for a ∈ [0, 1],17 one

17Strictly speaking we should allow a to be a moving parameter as well, but obviously any sequence {an} will

have finitely many accumulation points in [0, 1] and the argument can be conducted separately along the according
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can then write

lim
n→∞

P(θ ∈ CI3
1−α(θ))

= lim
n→∞

P
(
π̂ − ψ̂ − c1−ασ̂πφn

−1 ≤ πn − aψn ≤ π̂ + c1−ασ̂πφn
−1
)

= lim
n→∞

P
(
φnσ̂

−1
π

(
aψn − ψ̂

)
− c1−α ≤ φnσ̂

−1
π (πn − π̂) ≤ c1−α + φnσ̂

−1
π aψn

)
= lim

n→∞
P
(
φnσ

−1
π (a− 1)ψn − c1−α ≤ φnσ

−1
π (πn − π̂) ≤ c1−α + φnσ

−1
π aψn

)
= lim

n→∞

(
Φ
(
c1−α + φnσ

−1
π aψn

)
− Φ

(
φnσ

−1
π (a− 1)ψn − c1−α

))
.

Direct evaluation of derivatives shows that this limit is concave in a and is minimized when

a ∈ {0, 1}, in which case it equals 1− α.

Lemma B.4. Assume that φnσψ

(
ψ̂ − ψn

)
d→ N (0, 1), that φnσψ (π̂ − πn)

p→ 0, and that σ̂ψ/σψ →
1. Then limn→∞ infθyz∈Θyz P(θ ∈ CI4

1−α(θ)) = 1− α.

Proof. This mimics lemma B.3.

Lemma B.5. Let the assumptions of lemma A.5 hold. Then P(θ ∈ CI5
1−α(θ)) = 1− α.

Proof. In view of the fact that if ∆ → 0, then φn

(
∆̂−∆

)
→ 0, this follows by minimal

adaptation of arguments in Stoye (2009, proposition 1).

Proof of main result. This is now analogous to the proof of the main result in the preceding

proof.
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Graph showing the density of upper bound for violations of WARP over 100 subpopulations. 
In the subpopulations considered, the data are informative, as there could be between 10% 
and 60 % violations of rationality, and only few subpopulations show smaller upper bounds.  
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Same graph as figure 3, but with the density of upper confidence intervals, to account for sampling 
 uncertainty. Compared to previous graph, data could be more informative, though not very much. 
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Same graph as figure 3, but with the density of lower confidence intervals, to account for sampling un- 
 certainty. Vertical line = most subpopulations could have at least 5% violations with 95% Probability. 
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Density of point estimate for lower bound for subpopulations. Given the previous results that between 5% 
and 60% of the individuals within the subpopulations considered could violate rationality, we find little evi- 
dence that they do. Indeed, most point estimates are very close to 0.00. 
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Same graph as figure 3, but with the positive quadrant dependence refinement. Compared to figure 3, 
 data are still informative, even after ruling out violations due to economically implausible behavior. 
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