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Abstract

This paper applies the minimax regret criterion to choice between two treatments conditional

on observation of a finite sample. The analysis is based on exact small sample regret and does

not use asymptotic approximations nor finite-sample bounds. Core results are: (i) Minimax regret

treatment rules are well approximated by empirical success rules in many cases, but differ from

them significantly — both in terms of how the rules look and in terms of maximal regret incurred —

for small sample sizes and certain sample designs. (ii) Absent prior cross-covariate restrictions on

treatment outcomes, they prescribe inference that is completely separate across covariates, leading

to no-data rules as the support of a covariate grows. I conclude by offering an assessment of these

results.
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1 Introduction

In this paper, the minimax regret criterion is used to analyze choice between two treatments based on a

sample of subjects that have been exposed to one treatment each. This problem was recently analyzed

by Manski (2004). The difference to Manski’s approach is technical: I consider several extensions and,

more importantly, base the analysis entirely on exact small sample regret as opposed to large deviation

bounds. This adjustment qualitatively affects substantive results. It also illustrates the potential for

closed-form small sample analysis in problems of this type.

Minimax regret as a criterion for treatment choice has recently attracted renewed interest (Brock

2006, Eozenou et al. 2006, Hirano and Porter 2008, Manski 2004, 2005, 2006, 2007a, 2007b, 2008,

Schlag 2006, Stoye 2007a, 2009). Unfortunately, derivation of finite sample minimax regret decision

rules appears extremely hard. As a result, most of the existing literature either focuses on identification

and altogether abstracts from sampling uncertainty (Brock 2006, Manski 2006, 2008, Stoye 2007a),

states the finite sample problem without attempting to solve it (Manski 2007a, section 4), derives

bounds on finite sample regret (Manski 2004), or estimates minimax regret treatment rules (Manski

2007a, 2007b, Stoye 2009; Hirano and Porter 2008 provide the relevant asymptotic theory). To my

knowledge, the only exact results for finite samples so far are found in related work by Canner (1970)

and Schlag (2006), in Manski’s (2007a, section 5) analysis of a case that he calls “curiously simple,”

and in his brute force numerical analysis of the setup considered in proposition 1(iii) below (2005,

chapter 3).1

One important agenda of this paper is, therefore, to show that much can be learned from exact finite

sample analysis. On a substantive level, perhaps the most interesting finding is that some conclusions

refine those of Manski (2004) in ways that might be considered surprising, or even controversial. The

results also allow one to improve numerical analyses presented in Manski (2004) and to gauge the

similarity of small-sample decision problems to limit experiments as in Hirano and Porter (2008).

The paper is structured as follows. After setting up the notation and explaining minimax regret, I

analyze treatment choice without covariates, differentiating the analysis depending on whether one or

both treatments are unknown, and in the latter case, how treatments were assigned to sample subjects.

In some cases, the minimax regret rules are similar to empirical success rules, i.e. simple comparisons

of sample means, although significant differences are uncovered as well. Minimax regret decision rules

are generally quite different from those informed by classical statistics.

The analysis is then extended to the situation where treatment outcomes may depend on a covariate

X. This is a central concern in Manski (2004). The core result here may be the most surprising one,

and refines Manski’s (2004) finding in a way that overturns its interpretation. Specifically, in the

1Results that are subsequent to earlier versions of this paper are acknowledged in the conclusion.
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setting considered by Manski (2004) and here, minimax regret completely separates inference across

covariates for any sample size, leading to no-data rules as the support of a covariate grows large.

This result will be established in section 4 of the paper. Section 5 concludes with reflections on some

interesting features of the results. All proofs are collected in an appendix. A web appendix on the

author’s homepage contains additional numerical results, including exact counterparts of bounding

analyses in Manski (2004).

2 Setting the Stage

2.1 The Decision Problem

The decision problem is as in Manski (2004), and notation is largely his, with slight modifications

to align it with the literature on (statistical) decision theory. A decision maker has to assign one of

two treatments T ∈ {0, 1} to members j of a treatment population J . Each member of the treat-

ment population has a response function yj(t) : {0, 1} → [0, 1] that maps treatments onto outcomes.

Substantively, I therefore assume that a priori bounds on treatment outcomes exist, are known, and

coincide across treatments; restricting them to lie in [0, 1] is then a normalization. The population

is a probability space (J,Σ, P ) and is “large” in the sense that J is uncountable and P (j) = 0 for

all j. The decision maker cannot distinguish between members of J , hence from her point of view,

assigning treatment t induces a random variable Yt (the potential outcome) with distribution P (yj(t)).

(Covariates will be introduced later.)

It will be instrumental to focus on the distribution P (Y0, Y1) as unknown quantity. Specifically,

P (Y0, Y1) will be identified with a state of the world s, and the set S will collect all states of the world
that are considered feasible. I will analyze both a situation of complete ignorance and the problem

of testing an innovation, in which the behavior of treatment 0 is well understood. Formally, complete

ignorance means that S = ∆[0, 1]2, the set of distributions over [0, 1]2; testing an innovation means that
S =

©
Q(Y0, Y1) ∈ ∆[0, 1]2 : Q(Y0) = P (Y0)

ª
, where P (Y0) is known. Further restrictions on potential

outcome distributions could be imposed by restricting S; such analysis is undertaken in ongoing work.
If s were known, the decision maker would face a decision problem under risk. Assume that she

would resolve this problem by maximizing expected outcome, thus she would assign all subjects to

T = 1 if μ1 > μ0, to T = 0 if μ1 < μ0, and she would be indifferent if μ0 = μ1, where μt ≡ EYt. This
does not presume risk neutrality because Yt might be a utility; it does, however, presume a utilitarian

social welfare function.

The decision maker observes treatment outcomes experienced by a random sample of N members of

the treatment population. This statistical experiment generates a sample space Ω ≡ ({0, 1} × [0, 1])N
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with typical element ω = (tn, yn)Nn=1. The sampling distribution of T depends on the sample design,

and different such designs will be considered. Conditional on a realization tn, yn is an independent

realization of Ytn and, therefore, informative about s.

Treatment choice may condition on the outcome of the statistical experiment. Thus, the decision

maker can specify a statistical treatment rule δ : Ω 7→ [0, 1] that maps possible sample realizations ω

onto treatment assignments δ(ω) ∈ [0, 1], where the value of δ is interpreted as probability of assigning
treatment 1. In words, δ(ω) specifies the probability with which treatment 1 will be assigned to

members of the treatment population if the sample is ω. Nonrandomized decision rules take values

only in {0, 1}, but randomization is allowed and will be used. The set of all decision rules will be
denoted by D.
The expected outcome generated by δ given s is

u(δ, s) ≡ μ0 (1− Eδ(ω)) + μ1Eδ(ω),

i.e. an average of μ0 and μ1, weighted according to the probability that treatment 1 will be assigned.

Seen as a function of s, u(δ, s) is (the negative of) the risk function of treatment rule δ. If s were

known, the decision problem would be easy — the decision maker would, by assumption, use the no-data

rule that assigns the better treatment independently of ω. But with s unknown, one now encounters

a decision problem under ambiguity: Different treatment rules will be best for different states s, and

there is no obvious probability distribution according to which different states should be weighted.2

Many decision criteria have been suggested for this situation. The two most prominent ones are

the Bayesian approach, i.e. to place a subjective distribution on S and then rank decision rules

by the according expectation of u(δ, s), and maximin utility, i.e. to rank decision rules according

to mins∈S u(δ, s). In contrast to either, I follow Manski (2004) and other aforecited references and

evaluate treatment rules by their minimax regret. To understand this criterion, first define the regret

incurred by decision rule δ in state s,

R(δ, s) ≡ max
d∈D

u(d, s)− u(δ, s),

the difference between the expected outcome induced by δ and the outcome that could have been

achieved if s had been known. A minimax regret decision maker will minimize this quantity over all

possible states, i.e. she will pick

δ∗ ∈ argmin
δ∈D

max
s∈S

R(δ, s). (1)

2This problem was connected to the literature on ambiguity by Manski (2000). Except for a difference in labels, the

risk function (interpreted as function of s) is the expected utility functional u ◦ f from Stoye’s (2007b) axiomatization of

maximin utility and minimax regret as well as Gilboa and Schmeidler’s (1989) axiomatization of multiple prior maximin

utility.
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Minimax regret was originally introduced by Savages’s (1951) reading of Wald (1950). Its recent

reconsideration in the treatment choice literature is due to Manski (2004); see also Berger (1985, chapter

5) for a statistician’s discussion. An in-depth historical as well as axiomatic discussion of minimax

regret is found in Stoye (2007b; see also Hayashi 2008 and Stoye 2007c). Readers who are interested

in extensive motivations of minimax regret are referred to this literature. Three brief remarks are as

follows:

• Minimax regret has in common with maximin utility that it avoids the explicit use of priors.
Whether this is an advantage or a weakness is a judgment call that will be avoided here. It is

worth noting, though, that minimax regret implicitly selects a prior, hence one could think of it

as a prior selection device motivated by a specific notion of uniform quality of decisions.

• Minimax regret differs markedly from maximin utility by fulfilling the von Neumann-Morgenstern
independence axiom. At the same time, it is menu dependent: Adding decision rules to D
can affect the relative ranking of previously available ones, intuitively because it can alter the

benchmark against which regret is evaluated.

• Related papers (Hirano and Porter 2008, Manski 2004, Schlag 2003) emphasize that the maximin
utility criterion leads to trivial results in treatment choice problems. They advertise minimax re-

gret as a prior-free criterion that avoids this feature. The triviality result obtains here as well. Un-

der complete ignorance, every decision rule achieves maximin utility because mins∈S u(δ, s) = 0

for all δ, generated by the distribution P (Y0, Y1) that is entirely concentrated at (0, 0). For test-

ing an innovation, the no-data rule δ ≡ 0 achieves maximin utility, generated by the distribution
P (Y1) that is concentrated at (0). However, the conclusion regarding minimax regret is only

partially confirmed. In fact, the present paper contains the first (to my knowledge) realistic

example in which minimax regret is shown to admit a no-data rule.

2.2 The Game Theoretic Approach

Exactly solving (1) appears extremely hard, mainly because evaluation of R(δ, s) requires integration

over finite sample distributions. This difficulty is indirectly illustrated by much of the related literature:

Manski (2004) works with finite sample bounds on R(δES , s), where δES is the empirical success rule,

to be defined below; he does not assert that δES achieves either small sample or asymptotic minimax

regret. Manski (2007a, 2007b) and Stoye (2009) estimate minimax regret treatment rules by sample

analogs; a justification for this in terms of asymptotic efficiency is given by Hirano and Porter (2008).

However, many exact results can be generated by framing the decision problem as a statistical game,

a technique that will be explained in this section.

5



Consider the following simultaneous move zero-sum game. The decision maker picks a statistical

decision rule δ ∈ D; Nature picks a state of the world s. Both agents may randomize, and Nature’s

mixed strategies will be designated by π ∈ ∆S. Since D is closed under probabilistic mixture, no new
notation is needed to accommodate randomization by the decision maker. Nature’s payoff (and the

decision maker’s loss) is given by R(δ, s), and both players maximize expected payoff. Assume that

the game has a Nash equilibrium (δ∗, π∗), then the following facts are well known:3 (i) δ∗ is a minimax

regret treatment rule. The distribution π∗, which can be of independent interest, is usually called

least favorable prior. (ii) Any minimax regret decision rule δ0 is a best response to π∗, and any least

favorable prior π0 is a best response to δ∗. In particular, if (δ0, π0) is a Nash equilibrium as well, then

so are (δ0, π∗) and (δ∗, π0).

The upshot of (i) is that optimality of δ∗ can be established by “guessing and verifying” (δ∗, π∗).

Given a guess of (δ∗, π∗), one merely needs to verify Nature’s best-response condition

s∗ ∈ argmax
s∈S

R(δ∗, s),∀s∗ in the support of π∗ (2)

and the decision maker’s best-response condition

δ∗ ∈ argmin
δeD

Z
R(δ, s)dπ∗. (3)

Condition (3) can be further simplified as follows:

argmin
δeD

Z
R(δ, s)dπ∗ = argmin

δ∈D

Z µ
max
d∈D

u(d, s)− u(δ, s)

¶
dπ∗ = argmax

δ∈D

Z
u(δ, s)dπ∗,

using that maxd∈D u(d, s) does not depend on δ. Hence, a minimax regret decision maker will behave

like a Bayesian with utility function u(δ, s) and prior π∗. Specifically, let E( · |ω) denote posterior
expectations induced by prior π∗ and data ω, then any minimax regret treatment rule must assign

treatment 1 whenever E (Y1|ω) > E (Y0|ω) and treatment 0 if the opposite inequality holds. This
condition is usually easy to verify. The proof difficulty, if any, lies in establishing (2); the trick is that

this can frequently be done without fully evaluating R or π∗.

The upshot of (ii) is that beyond establishing minimaxity of δ∗, one can frequently show that δ∗ is

nearly unique, meaning that any minimax regret treatment rule must be a relatively minor modification

of it. All in all, the game theoretic approach provides a powerful proof technique. Its fundamental

limitation lies in the fact that no advice is given on how to find δ∗.4

3 See, for example, Berger (1985, section 5). The original source for this insight is Wald (1945).
4Note that the proof technique requires different probabilistic thinking than the original setting. The original setting

is frequentist, hence s is presumed fixed. But within the fictitious game, s is a random variable with distribution π∗ (in

equilibrium). Consequently, the decision maker’s “within-game inference problem” is Bayesian, namely to form beliefs

about s given prior π∗ and signal ω.
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3 Treatment Choice Without Covariates

This section analyzes treatment choice when there is no covariate. I consider three sample designs that

can be seen as stylized — and occasionally exact — descriptions of real-world data gathering procedures.

(i) Matched pairs: Let both treatments be unknown. Sample size N is even, and N/2 sample

points are assigned to either treatment.

(ii) Random assignment: Assume again that both treatments are unknown and let within-

sample treatment assignment be by independent tosses of a fair coin.

(iii) Testing an innovation: Assume that treatment 0 is well understood, i.e. the distribution

of Y0 is known. Obviously, all sample points will be assigned to treatment 1.

3.1 Binary Outcomes

Begin by assuming that outcomes are binary, i.e. Y0, Y1 ∈ {0, 1}, where a realization of yt = 1 will

be called a success. Hence, the possible states of the world simplify to S 0 = ∆{0, 1}2 respectively
S 0 =

©
P (Y0, Y1) ∈ ∆{0, 1}2 : E(Y0) = μ0

ª
with μ0 known. This restriction allows to isolate some core

issues and to generate (essentially) “if and only if”-statements. Specifically, minimax regret treatment

rules can be characterized as follows.5

Proposition 1 (i) In the case of matched pairs, minimax regret is achieved by

δ∗1(ω) ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, y1 < y0

1/2, y1 = y0

1, y1 > y0

,

where yt is a sample average that conditions on T = t, and with the understanding that if N = 0, then

δ∗1 = 1/2. Furthermore, any minimax regret treatment rule must agree with δ∗1 except when y0 = y1,

and δ∗1 is the unique minimax regret treatment rule that is measurable with respect to (y0, y1).

(ii) In the case of random assignment, let Nt denote the number of sample subjects assigned to

treatment t. Then minimax regret is achieved by

δ∗2(ω) ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, IN < 0

1/2, IN = 0

1, IN > 0

,

5Part (i) of this result extends, and abbreviates the proof of, a previous finding by Canner (1970, section 4).
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where

IN ≡ N1(y1 − 1/2)−N0(y0 − 1/2)

∝ [# (observed successes of treatment 1) +#(observed failures of treatment 0)]

− [# (observed successes of treatment 0) + #(observed failures of treatment 1)]

with the understanding that Nt(yt − 1/2) = 0 if Nt = 0. Furthermore, any minimax regret treatment

rule must agree with δ∗2 except when IN = 0, and δ∗2 is the unique minimax regret treatment rule that

is measurable with respect to IN .

(iii) In the case of testing an innovation, minimax regret is achieved by

δ∗3(ω) ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, Ny1 < n∗

λ∗, Ny1 = n∗

1, Ny1 > n∗

,

where n∗ ∈ {1, . . . , N} and λ∗ ∈ [0, 1] are characterized as follows:6

max
a∈[0,μ0]

(μ0 − a)

"X
n>n∗

µ
N

n

¶
an(1− a)N−n + λ∗

µ
N

n∗

¶
an
∗
(1− a)N−n

∗

#
(4)

= max
a∈[μ0,1]

(a− μ0)

"X
n<n∗

µ
N

n

¶
an(1− a)N−n + (1− λ∗)

µ
N

n∗

¶
an
∗
(1− a)N−n

∗

#
.

Furthermore, any minimax regret treatment rule must agree with δ∗3 except when Ny1 = n∗, and δ∗3

is the unique minimax regret treatment rule that is measurable with respect to Ny1. If N = 0, then

(n∗, λ∗) = (0, 1− μ0).

Proposition 1 not only identifies minimax regret rules, but establishes their near uniqueness in

the following sense: In every case, any minimax regret rule must agree with δ∗ whenever the value

of δ∗ is 0 or 1; this is because any other minimax regret rule must be Bayes against the same prior.

Furthermore, δ∗ is always the simplest possible minimax regret rule in the sense that it uses a data-

independent tie-breaking rule, whereas any other minimax regret rule would have to rely on additional

(but ancillary) sample information.7

6Expression (4) may look as if λ∗ is defined only in terms of n∗. Indeed, (4) can be solved for λ∗ given any

conjectured n∗. However, the proof shows that generically, λ∗ ∈ [0, 1] for exactly one choice of n∗. The exception is that
the expression may be solved by (n∗, 0) as well as (n∗ + 1, 1), which describe the same decision rule.

7Here is an example: In the setting of part (i), ties could also be broken by sequentially dropping the last matched

pair from the sample until δ∗1 is determinate when applied to the remaining sample, with even randomization if ω is

reduced to the empty set. The resulting decision function is formally deterministic for many ω where δ∗1 is randomized,

but is distributed as δ∗1 in every state s, thus has the same risk function.

Proposition 1 is readily extended to the case where N is a random variable with known distribution. Inspection of the

proofs reveals that statements (i) and (ii) would go through unchanged. In part (iii), (n∗, λ∗) would become a tedious

function of the realization of N . An explicit presentation is omitted to economize on notation, especially in part (iii).
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N = 1 N = 2 N = 3 N = 4 N = 5 N = 10 N = 20 N = 50 N = 100 N = 500

μ0= .05 0.33 0.48 0.59 0.44 0.74 1.22 1.18 2.68 5.18 25.18

μ0= .25 0.64 0.82 1.07 1.33 1.58 2.82 5.32 12.82 25.32 125.32

μ0= .50 1.0 1.5 2.0 2.5 3.0 5.5 10.5 25.5 50.5 250.5

μ0= .75 1.36 2.18 2.91 3.67 4.42 8.18 15.68 38.18 75.68 375.68

μ0= .95 1.67 2.52 3.41 4.56 5.26 9.78 19.82 48.32 95.82 475.82

Table 1: Testing an innovation: The minimax regret decision rule.

Parts (i) and (ii) of proposition 1 provide limited support for an aspect of Manski’s (2004) analysis.

To estimate the regret incurred by different sample designs, he restricts attention to the “simple

empirical success rule” δES ≡ I {y1 > y0}.8 This is clearly a simplification — in the spirit of the paper,
one would want to use a minimax regret treatment rule if it were known. Proposition 1(i) shows

that for binary outcomes and matched pairs, δES is reasonably close, the modification being that tie-

breaking must be symmetric. For randomized treatment assignment, the minimax regret decision rule

will asymptotically agree with δES but differ from it markedly for small samples and also for specific

realizations of rather large ones; see the conclusion for an example.

The characterization of δ∗3 is implicit, but numerical evaluation is easy. Table 1 illustrates the result

for a selection of sample sizes N and values of μ0.
9 Specifically, the table displays α ≡ n∗ + 1 − λ∗,

a smooth index of the treatment rule’s conservatism, with higher values indicating more conservative

rules: The number to the left of the decimal point is the critical number of observed successes that

leads to randomized treatment assignment, and the number to its right gives the probability with

which this randomization will pick treatment 0.

The minimax regret rule approximates an empirical success rule for rather small samples. This

renders it akin to Bayesian decision rules derived from noninformative priors (e.g., Berger 1985, chapter

3), but puts it in stark contrast to decision criteria informed by classical statistics. To illustrate this,

table 2 displays the decision rule employed by a statistician who chooses treatment 1 if the data reject

H0 : μ1 ≤ μ0 at 5% significance, with randomization on the threshold to maximize the test’s power.

The table can be read in exact analogy to table 1. For example, if μ0 = 0.25 and N = 10, then the

minimax regret decision rule prescribes to adopt treatment 1 with probability 0.18 if 2 successes were

observed and with probability 1 if more than 2 successes were observed. The hypothesis test will reject

H0 (hence, recommend adoption of treatment 1) with probability 0.52 if 5 successes were observed and

with probability 1 if even more successes were observed.

8Here and henceforth, I{E} denotes the indicator function for event E.
9This table extends table 3.1 in Manski (2005).
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N = 1 N = 2 N = 3 N = 4 N = 5 N = 10 N = 20 N = 50 N = 100 N = 500

μ0= .05 1.0 1.5 1.68 1.79 1.87 2.48 3.43 5.81 9.38 33.78

μ0= .25 1.8 2.2 2.76 3.02 3.61 5.48 8.85 18.19 32.78 141.58

μ0= .50 1.9 2.8 3.6 4.2 4.88 8.11 14.21 31.35 58.74 268.89

μ0= .75 1.93 2.91 3.88 4.84 5.79 10.11 18.62 42.90 82.51 391.29

μ0= .95 1.95 2.94 3.94 4.94 5.94 10.92 20.86 50.35 98.84 483.27

Table 2: Testing an innvoation: The classical decision rule (5 percent significance, one-tailed test).

Although it must eventually resemble an empirical success rule, the hypothesis testing rule is much

more conservative than minimax regret. The reason is that it emphasizes avoidance of type I errors

over avoidance of type II errors. In contrast, the minimax regret rule equalizes regret between two

worst-case scenarios that correspond to the two different error types, thus type I and type II errors are

treated roughly symmetrically. To be sure, while the classical decision rule will incur high worst-case

regret, the minimax regret rule will fail on classical terms. Continuing the above example, simple

computations establish that for μ0 = .25 and N = 10, the size of the implicit hypothesis test is 53%.

Furthermore, it can be shown that for any μ0 ∈ (0, 1), this size converges to 50% as N grows large.10

Which consideration matters depends on one’s objective function; the point here is to demonstrate

that the choice makes a big difference.

3.2 General Outcome Distributions

Now return to the case where (Y0, Y1) is distributed arbitrarily on [0, 1]2. Minimax regret treatment

rules for this case can be generated from proposition 1 as follows. Call a state s a Bernoulli state if

it implies Bernoulli distributions of both Y0 and Y1 (i.e., binary outcomes). Observe that Bernoulli

states are fully characterized by triplets E(Y0, Y1, Y0Y1). For any state s, call its Bernoulli equivalent

the Bernoulli state s0 such that s and s0 induce the same value of E(Y0, Y1, Y0Y1). For any state

space S, let S 0 denote its Bernoulli equivalent, generated by replacing every state s ∈ S with its

Bernoulli equivalent s0. Finally, for any decision rule δ ∈ D, define eδ ∈ D as follows: (i) Replace every
observation yn ∈ [0, 1] with one independent realization eyn of a Bernoulli variable eYn with parameter
yn. (ii) Operate δ on eω ≡ (tn, eyn)Nn=1. In words, eδ is generated from δ by preceding the latter with an

information coarsening in which outcome observations other than {0, 1} are replaced by independent
tosses of biased coins. Perhaps surprisingly, this coarsening does not affect minimax analysis.

10By size of the implicit hypothesis test, I mean the probability of rejecting H0 — hence adopting treatment 1 — even

though H0 is true, evaluated at μ1 = μ0, which is the parameter value within H0 that maximizes this probability.
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Proposition 2 (i)

min
δ∈D

max
s0∈S0

R(δ, s0) = min
δ:δ∈D

max
s∈S

R(eδ, s)
δ ∈ argmin

δ∈D
max
s0∈S0

R(δ, s0) =⇒ eδ ∈ arg min
δ:δ∈D

max
s∈S

R(eδ, s).
(ii) If S 0 ⊆ S, then furthermore

min
δ∈D

max
s0∈S0

R(δ, s0) = min
δ∈D

max
s∈S

R(δ, s)

δ ∈ argmin
δ∈D

max
s0∈S0

R(δ, s0) =⇒ eδ ∈ argmin
δ∈D

max
s∈S

R(δ, s).

The last statement contains the most important insight: If S 0 ⊆ S and δ∗ achieves minimax regret

over S 0, then eδ∗ achieves minimax regret over S. This idea is not original to this paper — it was
previously and independently discovered by Cucconi (1968), Gupta and Hande (1992), and Schlag

(2003). The intuition for why it works is as follows: In the fictitious game, the coarsening removes

any incentive for Nature to use non-Bernoulli states, thus one can as well presume that she does — but

then the coarsening does not matter.

If S equals any one specification from section 2.1, and S 0 is the according specification from section
3.1, then S 0 ⊆ S. Hence, eδ∗1, eδ∗2, respectively eδ∗3 — randomized versions of the rules identified in
proposition 1 — achieve minimax regret for the respective sample designs but with outcomes unrestricted

over [0, 1]. Some clarifications are in order: First, a price of the generalization is that the “near

uniqueness” statements are lost. Second, the disentangling of parts (i) and (ii), which is original

to this paper, highlights that the generalization depends on Bernoulli states being possible. Third,

the deliberate discarding of information in the binary randomization step raises the possibility of the

resulting rules being inadmissible.

A notable feature of this result is that for general treatment outcomes, minimax regret treat-

ment rules may differ much from empirical success rules. For one thing, the information coars-

ening causes eδ∗1 to be randomized even if y0 6= y1. As an example, δES((0, .5), (1, .6)) = 1 buteδ∗1((0, .5), (1, .6)) = 0.55. Furthermore, y0 and y1 cease to be sufficient statistics for matched pairs.

For example, eδ∗1((0, 0), (0, 1), (1, 1), (1, 1)) = 1 but eδ∗1((0, 1/2), (0, 1/2), (1, 1), (1, 1)) = 0.875.
To be sure, these differences vanish as samples become large. For all cases of proposition 1, one

can verify that eδ∗i is asymptotically equivalent to δES for every state s (although not uniformly over
S). Also, it is not intuitively obvious that eδ∗1 is more attractive than δES . However one feels abouteδ∗1, though, proposition 2 is of interest because it yields finite sample, nonparametric minimax regret
efficiency bounds that apply to all feasible statistical treatment rules. I now turn to these bounds.
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3.3 Value of the Decision Problem

The minimax regret value of a decision problem (that is, the maximal regret incurred by δ∗) equals

the fictitious game’s value. Thus, understanding the equilibrium of the fictitious game allows one

to compute this value. Let R∗1(N), R
∗
2(N), and R∗3(N) denote the minimax regret values of the

above decision problems; e.g., R∗1(N) = minδ∈Dmaxs∈S R(δ, s) given matched pairs.
11 Then minimal

expansion of the previous proofs yields the following result.

Corollary 1

R∗1(N) = R∗2(N) = max
a∈[1/2,1]

⎧⎨⎩(2a− 1) X
n<N/2

µ
N 0

n

¶
an(1− a)N

0−n

⎫⎬⎭
N 0 = max

M∈N
{M ≤ N :M is odd},

where R∗1(0) = R∗2(0) = 1/2.

R∗3(N) = max
a∈[μ0,1]

(
(a− μ0)

"X
n<n∗

µ
N

n

¶
an(1− a)N−n + (1− λ∗)

µ
N

n∗

¶
an
∗
(1− a)N−n

∗

#)

with (n∗, λ∗) as in proposition 1(iii), and with R∗3(0) = μ0(1 − μ0). These expressions apply to both

binary and general outcome distributions.

This corollary establishes finite sample minimax regret efficiency bounds that apply to all treatment

rules, it allows one to assess the small sample performance of the empirical success rule δES , and it

implies the exact gain (in terms of minimax regret) from increasing the sample size. All of these

applications are carried out in the web appendix. An interesting finding is that for general outcomes

and very small samples, δES incurs at least double the best possible maximal regret.

4 Treatment Choice with Covariates

This section extends the analysis to treatment choice with covariates. To begin, assume that there

exists a finite-valued covariateX supported on X = {x1, . . . , xK}, where all values ofX occur with non-

zero probability. The covariate is observable in both the sample data and the treatment population; the

decision maker can, therefore, condition treatment choice on covariates. One might wonder whether

treatment rules should takeX at least partially into account or rather pool information across covariate

values. This question is at the core of Manski’s (2004) analysis. The answer is intuitively non-obvious

for small samples, because one encounters a trade-off between the decision rule’s resolution and the size

of relevant sample cells. Using bounds on regret, Manski (2004) establishes that for surprisingly small

11Dependence of R∗3 on μ0 is suppressed to achieve unified notation.
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sample sizes, covariate-wise empirical success rules outperform any rule that pools information. This

conclusion becomes much more stark under exact analysis: In the natural extension of the previous

propositions’ setup, minimax regret is achieved by separating inference across covariates for any sample

size.

Formalizing this insight requires some additional notation. Potential outcomes are now random

variables Ytx that depend on treatment as well as covariate. A state of the world s is a distribution

P ((Y0x, Y1x)x∈X ) with marginals sx ≡ P (Y0x, Y1x); define also the conditional state space Sx ≡ {sx :
s ∈ S}. A sample ω collects realizations (tn, xn, yn), where the distributions of both T andX depend on

the sample design and yn is an independent realization of Ytnxn . To keep the argument simple, exclude

sequential sample designs, thus (T,X) cannot depend on lagged realizations of Ytnxn . A statistical

treatment rule maps samples ω into vectors of treatment assignment probabilities δ(ω) ∈ [0, 1]K , whose
components δx(ω) are identified with probabilities of assigning treatment 1 to subjects with covariate

value x. A treatment rule’s risk function is u(δ, s) ≡
P

x∈X Pr(X = x) (μ0x (1− Eδx(ω)) + μ1xEδx(ω)),

where (μ0x, μ1x) ≡ E(Y0x, Y1x). Regret is R(δ, s) ≡ maxd∈D u(d, s) − u(δ, s) as before. Finally, it

will turn out that judicious specification of the state space S is of utmost importance. The most
natural choice, entertained by Manski (2004) and here, is to set S = ∆[0, 1]2K (with restrictions

on P ((Y0x)x∈X ) in the case of testing an innovation). But this section’s results only require the

following, weaker richness condition: For any vector (s0x)x∈X ∈ ×x∈XSx, there exists a state s ∈ S s.t.
(sx)x∈X = (s

0
x)x∈X . In words, the state space is not constrained by cross-covariate restrictions.

To formalize the notion of “no cross-covariate inference,” I need to define a notion of condi-

tional (on a covariate) decision problems. Thus, for any x ∈ X and sample realization ω, let

ωx ≡ {(tn, xn, yn) : xn = x} collect those observations where xn = x. (ωx may be the empty set.)

Let Ωx ≡ {ωx : ω ∈ Ω} collect possible realizations of ωx. Then Dx : Ωx → [0, 1] collects decision

rules dx which map conditional sample realizations ωx onto probabilities of assigning treatment 1̇.

Substantively, dx(ωx) ∈ [0, 1] should be thought of as assigning treatment for subjects with covariate
value x, all other assignments remaining unspecified. Thus, the decision rules in Dx are available to a

decision maker who only sees sample realizations for a given covariate value x and only needs to assign

treatment conditional on that same x. Call this decision problem the conditional problem, and call

dx a conditional decision rule. Then conditional decision problems can be analyzed just like uncondi-

tional ones: They induce conditional expected outcomes ux(dx, sx) ≡ μ0x (1− Edx(ωx))+μ1xEdx(ωx)

and conditional expected regret Rx(dx, sx) ≡ maxδx∈Dx ux(δx, sx) − ux(dx, sx); the notation here re-

flects that ux and Rx depend on s only through sx. In particular, for a given x, there might exist

a conditional minimax regret treatment rule d∗x ∈ argmindx∈Dx maxsx∈Sx Rx(dx, sx), and it might be

supported by a conditional least favorable prior π∗x ∈ ∆Sx.
Any collection (dx)x∈X of conditional decision rules can be used to define a statistical decision
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rule δ that uses no cross-covariate information — just let δx(ω) = dx(ωx) for every x. This decision

rule might appear inefficient in small samples, even if its components make efficient use of conditional

information. In other words, even δ∗(ω) = (d∗x(ωx))x∈X , with each d∗x a conditional minimax regret

treatment rule as just defined, might not appear compelling in the overall decision problem. This

section’s core result is to refute this intuition. In fact, δ∗ achieves finite sample minimax regret.

Proposition 3 Assume that d∗x, supported by least favorable prior π
∗
x ∈ ∆Sx, exists for every x ∈ X .

Then minimax regret is achieved by δ∗ as just defined.

I will first give an illustration for the proposition’s use, then an intuition for why it is true, and

then discuss it. As to its use, proposition 3 does not require that (d∗x)x∈X is known, but when it is,

an explicit minimax regret treatment rule emerges. Furthermore, when “near uniqueness” results are

available, the proposition can be strengthened. As a concrete example, here is a decision problem

analyzed in Manski’s (2004) discussion of optimal stratification.

Example 1 Let X = {m,f} and let the sample be stratified into 4 cells as follows: Nm/2 ≥ 0 men
receive treatment 0, Nm/2 men receive treatment 1, Nf/2 ≥ 0 women receive treatment 0, and Nf/2

women receive treatment 1. Then minimax regret is achieved by eδ∗, characterized by first transforming
the data as in proposition 2 and then operating δ∗ defined by:

δ∗m(ω) ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, y1m < y0m

1/2, y1m = y0m

1, y1m > y0m

δ∗f (ω) ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, y1f < y0f

1/2, y1f = y0f

1, y1f > y0f

,

where ytx is the sample average that conditions on (X = x, T = t), with the understanding that ytx = 0

if Nx = 0.

If outcomes are binary, then one can directly apply δ∗ and furthermore has: (i) Any minimax regret

treatment rule must agree with δ∗ up to tie-breaking. (ii) A modification of δ∗ whereby [y1m = y0m]⇒
δ∗m(ω) = δ∗f (ω) and

£
y1f = y0f

¤
⇒ δ∗f (ω) = δ∗m(ω) fails to achieve minimax regret unless Nm = Nf =

0.

These statements hold even if Nm = 0 or Nf = 0.

Together with corollary 1, this example can be used to conduct Manski’s (2004) analysis of optimal

stratification in terms of exact regret as opposed to large deviations bounds; numerical results are

provided in the web appendix. However, the example also highlights the counterintuitive nature of
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proposition 3 and, with binary outcomes, allows for a stronger claim: Any minimax regret treatment

rule must agree with δ∗ up to tie-breaking, and even the tie-breaking cannot be the commonsensical

one, namely according to the comparison of treatment outcomes conditional on the other covariate

value.12

To see why the proposition holds, observe that R(δ∗, s) =
P

x∈X Pr(X = x)Rx(d
∗
x, sx). Nature’s

best response condition (2) is, therefore, fulfilled by any prior π whose conditional distributions πx

coincide with the conditional least favorable priors π∗x. Among all such priors, consider the one that

furthermore renders sx independent of sx0 for any x 6= x0, so that ωx is uninformative about sx0 . δ
∗ is

Bayes against π∗, thus an equilibrium of the fictitious game has been found. The richness condition

on S is needed to ensure existence of π∗.
Paradoxically, the recommendation based on small sample analysis does not seem desirable in a

world of small samples. It requires one to condition on covariates even if this leads to extremely

small or empty sample cells. While medical researchers might want to consider the effect of race on

treatment outcomes, they will hardly want to altogether ignore experiences made with white subjects

when considering treatment for black subjects unless samples are extremely large. And surely, they

would not want to consider an arbitrary covariate that happens to be in the data set.

What’s more, proposition 3 implies that as the support of a covariate grows, minimax regret

treatment rules approach no-data rules, because the proportion of covariate values that have been

observed in the sample vanishes. Indeed, one can extend the result to a continuous covariate, and

a no-data rule then achieves minimax regret. To formalize this, let X = [0, 1] and assume without

further loss of generality that the distribution of X is uniform. Then a decision rule maps the sample

space onto decision functions δ : [0, 1]→ [0, 1]. In this setup, maxs∈S R(δ, s) may not be attained, but

the following result holds.

Proposition 4 Consider the setup for continuous X as just defined. Fix an arbitrary sample size

N <∞ and an arbitrary sampling scheme for T and X. Then:

(i) If (μ0x, μ1x) is unknown, then minδ∈D sups∈S R(δ, s) = 1/2. This value is achieved by δ
∗
x(ω) =

1/2,∀ω.
(ii) If μ0x is a known, Lebesgue measurable function on [0, 1], then minδ∈D sups∈S R(δ, s) =R

μ0x(1− μ0x)dx. This value is achieved by δ
∗
x(ω) = 1− μ0x,∀ω.

To be sure, proposition 4 does not say that no-data rules outperform sensible data-dependent

ones with respect to pointwise regret. In fact, they are weakly dominated and hence inadmissible.

12Using proposition 1(ii), the example is easily extended — with the same message — to randomized treatment assign-

ment. By the extension of proposition 1(ii) to random N , one can furthermore extend it to the case where the sample

is a simple random sample from the population (as opposed to being stratified by gender).

15



Two examples of dominating rules are to use the no-data rule except if a covariate value observed

in the sample ever recurs exactly, in which case the according sample information should be used; or

(as pointed out by a referee) to completely ignore the covariate and use eδ∗1, eδ∗2, or eδ∗3 if they apply
to the resulting problem. However, no treatment rule outperforms the no-data rule uniformly over

S and, therefore, not in terms of the worst-case analysis that informs minimax regret. Intuitively,
the problem is that (μ0x, μ1x) respectively μ1x can be infinitely “wiggly” functions of x, so that the

amount of information revealed by a sample of any given size N cannot be bounded away from zero.

This intuition relates proposition 4 to classic impossibility results regarding uniform performance of

statistical decision procedures (e.g., Bahadur and Savage 1956).

5 Concluding Remarks

This paper contributes to a rather young literature in which a rather old criterion is applied to models

of real-world decisions.13 I characterized finite sample minimax regret rules for the scenario analyzed

by Manski (2004) and variations thereof. Important results include the comparison between exact

minimax regret rules and empirical success rules or rules informed by classical statistics. Perhaps

most interestingly, the analysis of covariates leads to a reassessment of Manski’s (2004) findings on

the subject. On a more general level, it was seen that exact analysis is more feasible than might have

been anticipated and can generate some significant and rather general insights.

Numerous extensions of the results might be of interest, and some already exist. For example, I

mentioned the generalization toN being a random variable with known distribution. The case where N

is ambiguous (i.e., its distribution is unknown) is not interesting because regret is trivially maximized

by minimizing N . Proofs are also easily extended to show that if the sample design itself is a choice

variable, then all three designs considered in proposition 1 are minimax regret optimal under their

respective information assumptions. Further results on endogenous sample design are found in Schlag

(2006). Subsequently to research reported here, Manski and Tetenov (2007) generalized proposition

1(iii) to regret functionals based on nonlinear transformations of u(δ, s); Tetenov (2007) generalized

it to asymmetric regret functionals that differentiate between type I and type II errors; and Stoye

(2007d) solved certain missing data problems. Other questions remain open, prominently among them

the extension to multivalued treatments.

A natural question is whether the minimax regret criterion is an attractive alternative to existing

approaches. There are two ways to investigate this: One is axiomatic analysis, the other one is to look

whether actual minimax regret rules make sense. The former has been done elsewhere (Hayashi 2008;

Milnor 1954; Stoye 2007b, 2007c). The latter was one purpose of this paper, and the results raise some

13The formal introduction of minimax regret is generally attributed to Savage (1951).
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concerns. Consider specifically the findings on covariates. Manski (2004) discovered that for surpris-

ingly small sample sizes, lower bounds on expected regret incurred by pooling the sample exceed upper

bounds incurred by conditioning on covariates. This finding was used to criticize prevailing practice,

tentatively suggesting that there is too much pooling of observations across covariate values. However,

it is now seen that the result was merely an approximation of a much stronger, and pathological, one.

The exact finding cannot any more inform a critique of prevailing practice, but rather raises questions

about minimax regret. What’s more, the existence of easy examples in which the maximin utility

criterion generates no-data rules is frequently used to argue against maximin utility, and sometimes in

favor of minimax regret as an alternative. Proposition 4 undermines this line of reasoning as well.

I will conclude by offering some thoughts on where the problem lies. Specifically, a minimax regret

decider will act as if she had probabilistic beliefs described by the least favorable prior π∗. This need

not mean that she actually believes π∗; minimax regret may serve as pragmatic prior selection device

for users who are reluctant to specify informative priors. But it means that to understand the workings

of minimax regret treatment rules, it can be instructive to investigate π∗.

This is especially salient with respect to proposition 3. In those applications where completely ig-

noring cross-covariate information sounds absurd, it is noted that the corresponding prior — specifically,

P (Y1x) and P (Y1x0)may be extremely different — appears excessively conservative with respect to what

can be learned from data. Perhaps the problem can be alleviated by properly specifying available prior

information. The most obvious way to do this is to restrict S; for example, appropriate restrictions on
(P (Y0x))x∈X might exclude states in the support of π

∗. Users who explicitly use minimax regret as a

prior selection device could also make the set of admissible priors a subset of ∆S and directly exclude
π∗. Ongoing research indicates that some natural such restrictions lead to reasonable minimax regret

treatment rules. However, even when they are substantively uncontroversial, and although they may

avoid probabilistic language, these restrictions will typically be of a subjective nature. Introducing

them may lead to convergence between the frequentist methods analyzed here and approaches that

are “robust Bayesian” in the sense of admitting multiple priors (e.g., Berger 1985).

Proposition 1(ii) poses a more subtle challenge to intuitions and may appear reasonable to many

readers. But consider the following example (due to Charles Manski): The randomized treatment

design was applied to a sample of size 1100, and 1000 subjects were allocated to treatment 0. Among

these observations, 550 successes and 450 failures were observed. Among the 100 subjects assigned

to treatment 1, 99 successes and 1 failure were observed. Then any minimax regret treatment rule

prescribes to assign all future subjects to treatment 0. This conclusion is less than obvious, and many

other decision criteria will prescribe treatment 1. What is going on here?

Some understanding can be gained by reconsidering the maximin utility criterion. Here as well as in

other contexts, maximin utility generates trivial decision rules. The reason is that it optimizes against
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a least favorable prior π∗ under which treatments are uniformly catastrophic even if sample evidence

overwhelmingly shows that this prior cannot be right. I suspect that this unresponsiveness to likelihoods

is the true problem of maximin utility, and that the triviality results are just symptoms. Furthermore,

the problem with proposition 1(ii) might be just the same. Given π∗2 (“either (μ0, μ1) = (a, 1− a) or

(μ0, μ1) = (1− a, a)”), the prescription to choose treatment 0 is doubtlessly correct. But the example

presumes a sample realization which renders this prior empirically implausible. If proposition 1(ii) is

seen as a problem, then its cause may lie in minimax regret’s selective ignorance of likelihoods, or in

other words, in the fact that the least favorable prior is typically dogmatic on some dimensions.

These arguments are not intended to “prove” minimax regret “wrong.” On the contrary, I believe

that it deserves much further investigation and that other criteria have significant downsides as well.

But obviously, these should not keep proponents of minimax regret from being candid about potential

drawbacks of this criterion.

A Proofs

Proposition 1

Preliminaries. Observe the following simplifications: R(δ, s) can be expressed as

R(δ, s) = max {μ0, μ1}− (μ0E(1− δ(ω)) + μ1Eδ(ω)) (5)

= (μ1 − μ0)
+ E(1− δ(ω)) + (μ0 − μ1)

+ Eδ(ω), (6)

where Y + ≡ max{Y, 0} is the positive restriction of Y . Because ω collects independent realizations
of Yt, this expression depends on P (Y0, Y1) only through the marginal distributions P (Y0) and P (Y1).

Since Y0 and Y1 are binary, P (Y0) and P (Y1) are characterized by (μ0, μ1). In this proof, I therefore

identify states with couplets (μ0, μ1) ∈ [0, 1]2. Also, define nt as the number of successes recorded
for treatment t, thus nt = N/2 · yt in part (i), nt = Ntyt in part (ii), and n1 = Ny1 in part (iii).

Finally, I follow game theoretic conventions by using asterisks to denote the equilibrium values of

choice parameters.

(i) I will show that the fictitious game has a Nash equilibrium (δ∗1, π
∗
1), where δ

∗
1 is as defined in

the proposition and where π∗1 is the uniform distribution over {(a, b), (b, a)} for some constants (a, b)
with a > b. (Computation of the constants leads to corollary 1 but is not needed here.) Notice that

in the definition of δ∗1, yt can be replaced with nt as just defined.
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Nature’s best-response condition (2) is fulfilled if π∗1 is supported on

arg max
s∈[0,1]2

R(δ∗1, s)

= arg max
(μ0,μ1)∈[0,1]2

½
(μ1 − μ0)

+

µ
Pr(n0 > n1) +

1

2
Pr(n0 = n1)

¶
(7)

+ (μ0 − μ1)
+

µ
Pr(n1 > n0) +

1

2
Pr(n1 = n0)

¶¾
.

Here, the probabilities refer to the sampling distribution of (n0, n1), e.g.

Pr(n0 > n1) =

N/2−1X
n1=0

N/2X
n0=n1+1

µ
N/2

n0

¶
μn00 (1− μ0)

N/2−n0
µ
N/2

n1

¶
μn11 (1− μ1)

N/2−n1 .

The objective is continuous and the feasible set is compact, hence the argmax is nonempty. Further-

more, the objective is symmetrical in μ0 and μ1, hence the argmax contains (a, b) iff it contains (b, a).

This establishes existence of π∗1.

It remains to show that δ∗1 is Bayes against any such π∗1. This requires that δ
∗
1(ω) = 1 if

E(Y1|ω) > E(Y0|ω)

⇐⇒
1
2aPr(ω|s = (b, a)) +

1
2bPr(ω|s = (a, b))

1
2 Pr(ω|s = (b, a)) +

1
2 Pr(ω|s = (a, b))

>
1
2bPr(ω|s = (b, a)) +

1
2aPr(ω|s = (a, b))

1
2 Pr(ω|s = (b, a)) +

1
2 Pr(ω|s = (a, b))

⇐⇒ Pr(ω|s = (b, a)) > Pr(ω|s = (a, b))

⇐⇒
µ
N/2

n0

¶
bn0(1− b)N/2−n0

µ
N/2

n1

¶
an1(1− a)N/2−n1 >

µ
N/2

n0

¶
an0(1− a)N/2−n0

µ
N/2

n1

¶
bn1(1− b)N/2−n1

⇐⇒
µ

a

1− a

¶n1−n0
>

µ
b

1− b

¶n1−n0
⇐⇒ n1 − n0 > 0.

Here, the expectations are posterior expectations induced by prior π∗1 and data ω. The first step

expands these by means of standard Bayesian formulas, and the remaining steps are algebra. Similarly,

δ∗1(ω) must be 0 whenever n1 − n0 < 0 and can be arbitrary if n1 − n0 = 0, including the case that

N = 0.

This establishes the Nash equilibrium. As any minimax regret decision rule must be Bayes against

π∗1, δ
∗
1 is unique whenever it is a strict best response, that is, except when n0 = n1. Restrict attention

to decision rules that depend only on (n0, n1), then it follows that δ
∗
1 is unique up to the tie-breaking

probability. Assume this probability favors treatment 0 [1], then Nature will want to deviate to the

pure strategy concentrated on (b, a) [(a, b)]. Thus tie-breaking must be even.

(ii) I will show that the fictitious game has a Nash equilibrium (δ∗2, π
∗
2), where δ

∗
2 is as defined in

the proposition and where π∗2 is the uniform distribution over {(a, 1− a), (1− a, a)} for some constant
a > 1/2. In other words, π∗2 is like π

∗
1 with the additional feature that a+ b = 1.
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Nature’s best response condition (2) requires that π∗2 is supported on

arg max
s∈[0,1]2

R(δ∗2, s)

= arg max
(μ0,μ1)∈[0,1]2

½
(μ1 − μ0)

+

∙
Pr(IN < 0) +

1

2
Pr (IN = 0)

¸
+ (μ0 − μ1)

+

∙
Pr(IN > 0) +

1

2
Pr (IN = 0)

¸¾
,

where the probabilities refer to the sampling distribution of IN = n1−n0− (N1−N0)/2. For example,

Pr(IN > 0) =
NX

N1=0

µ
N

N1

¶
2−N

X
(n0,n1):n1−n0−(N1−N0)/2>0

µ
N0

n0

¶
μn00 (1−μ0)N0−n0

µ
N1

n1

¶
μn11 (1−μ1)N1−n1 .

As before, this argmax is nonempty and symmetric in the sense that it contains (a, b) iff it contains

(b, a). It therefore suffices to show that it contains an element (a, 1− a). This is done by establishing

that the objective function depends on (μ0, μ1) only via (μ1 − μ0).

It suffices to show that IN is independent of μ0 given (μ1−μ0). The proof will be by induction over
N , thus assume the result for N and consider Pr(IN+1 = x). This event can occur in four ways: Either

the firstN sample points induced IN = x−1 and the last observation was (tN+1, yN+1) ∈ {(0, 0), (1, 1)},
or IN = x+ 1 and (tN+1, yN+1) ∈ {(0, 1), (1, 0)}. Thus

Pr(IN+1 = x) = Pr(IN = x− 1) ·
µ
1

2
(1− μ0) +

1

2
μ1

¶
+ Pr(IN = x+ 1) ·

µ
1

2
μ0 +

1

2
(1− μ1)

¶
= Pr(IN = x− 1) ·

µ
1

2
+
1

2
(μ1 − μ0)

¶
+Pr(IN = x+ 1) ·

µ
1

2
+
1

2
(μ0 − μ1)

¶
.

The argument is concluded by observing that I0 is deterministically equal to zero.

To verify that δ∗2 is Bayes against any such π∗2, write

E(Y1|ω) > E(Y0|ω)

⇐⇒
µ
N0

n0

¶
(1− a)n0aN0−n0

µ
N1

n1

¶
an1(1− a)N1−n1 >

µ
N0

n0

¶
an0(1− a)N0−n0

µ
N1

n1

¶
(1− a)n1aN1−n1

⇐⇒ an1+N0−n0(1− a)N1−n1+n0 > aN1−n1+n0(1− a)n1+N0−n0

⇐⇒ a2n1−N1−(2n0−N0) > (1− a)2n1−N1−(2n0−N0)

⇐⇒ aIN > (1− a)IN

⇐⇒ IN > 0,

where the algebra omits some initial steps that are completely analogous to the similar argument in

(i). Arguments for near uniqueness of δ∗2 are as in (i).

(iii) For consistency of notation, I continue to identify states with couplets s = (μ0, μ1). Recall,

however, that μ0 is now given and Nature can only choose μ1. I will show that there exists a Nash

equilibrium (δ∗3, π
∗
3), where δ

∗
3 is as in the proposition and π

∗
3 is supported on {(μ0, b), (μ0, a)} for some

constants a > μ0 > b.
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Nature’s best-response condition (2) requires π∗3 to be supported on

arg max
s∈{μ0}×[0,1]

R(δ∗3, s)

= arg max
μ1∈[0,1]

n
(μ0 − μ1)

+
(Pr(n1 > n∗) + λ∗ Pr(n1 = n∗)) (8)

+(μ1 − μ0)
+ (Pr(n1 < n∗) + (1− λ∗) Pr(n1 = n∗))

ª
,

where the probabilities refer to the sampling distribution of n1, e.g.

Pr(n1 > n∗) =
X
n>n∗

µ
N

n

¶
μn1 (1− μ1)

N−n.

For π∗3 to be a best response, it is necessary that the argmax in (8) contains some state (μ0, b) as

well as some state (μ0, a). Inspection of (8) reveals that this requires

max
μ1∈[0,μ0]

{(μ0 − μ1) (Pr(n1 > n∗) + λ∗ Pr(n1 = n∗))} = max
μ1∈[μ0,1]

{(μ1 − μ0) (Pr(n1 < n∗) + (1− λ∗) Pr(n1 = n∗))} ,
(9)

which equals condition (4) upon writing out the probabilities.

I now show that (n∗, λ∗) can be chosen so that (9) holds. More specifically, condition (9) uniquely

determines (n∗, λ∗) as a function of μ0, with the caveat that (n
∗, 0) and (n∗+1, 1) represent the same

decision rule. To see this, define α ≡ n∗+1−λ∗ ∈ [0, N + 1], the variable whose values are displayed in

table 1. The mapping from distinct decision rules (n∗, λ∗) to α is one-to-one. Indeed, α is an indicator

of a treatment rule’s conservatism, with α = 0 [N + 1] indicating the no-data rule that always [never]

assigns treatment 1. To take care of some trivial cases, note that if μ0 = 0 [1], then condition (9) holds

with α = 0 [N + 1].

Now let μ0 ∈ (0, 1) and consider the l.h.s. of (9). For any fixed μ1, (μ0 − μ1) (Pr(n1 > n∗) + λ∗ Pr(n1 = n∗))

decreases in α, strictly so except when μ1 = 0 and α ≥ 1, in which case it is constant at 0. Since the
l.h.s. of (9) cannot be solved by any μ1 that sets it equal to 0, it strictly decreases in α. Furthermore,

it is continuous in α by inspection, and straightforward computations show that it equals μ0 if α = 0

and 0 if α = N + 1. By similar arguments, the r.h.s. of (9) strictly and continuously increases from 0

to (1− μ0) as α increases from 0 to N + 1. It follows that (9) holds for exactly one α ∈ [0, N + 1].

It remains to show that δ∗3 is a best response to π
∗
3. As in the preceding two cases, the monotone

likelihood ratio property of the binomial distribution implies that there exists some threshold en s.t. a
best response to π∗3 assigns all subjects to treatment 1 [0] if n1 > [<]en. Thus, equilibrium is obtained

if the prior probability p∗ ≡ Pr(s = (μ0, a)) is chosen such that en = n∗. This requires that the decision

maker is indifferent between treatments conditional on n1 = n∗, hence that the posterior expectation

of Y1 conditional on n1 = n∗ fulfils

μ0 = E (Y1|n1 = n∗) =
ap∗ Pr(n1 = n∗|s = (μ0, a)) + b(1− p∗) Pr (n1 = n∗|s = (μ0, b))
p∗ Pr(n1 = n∗|s = (μ0, a)) + (1− p∗) Pr (n1 = n∗|s = (μ0, b))

.
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Clearly E (Y1|n1 = n∗) continuously increases from b to a as p∗ increases from 0 to 1, hence p∗ can

always be found.

For N = 0, it is easily established that δ∗3 = 1− μ0, supported by prior π
∗
3 that puts weight μ0 on

(μ0, 1) and weight (1− μ0) on (μ0, 0). The “near uniqueness” statements follow as before.

Proposition 2

(i) The crucial observation is that R(eδ, s) = R(δ, s0), which immediately implies both claims.

To see it, consider first the unconditional (on Yn) distribution of eYn. This distribution is Bernoulli
because eYn ∈ {0, 1}. Furthermore, a simple application of the law of iterated expectations shows that
its parameter is μtn . It follows that the distribution of

eYn, and hence of eω, depends on s only through
(μ0, μ1).

Now recall that R(eδ, s) = max {μ0, μ1} − (μ0E(1− δ(eω)) + μ1Eδ(eω)). In view of the preceding

paragraph’s insight, this expression depends on s only through (μ0, μ1). Since the transformation from

s to s0 preserves (μ0, μ1), one finds that R(eδ, s) = R(eδ, s0). But eω = ω a.s. if the state is s0, hence

R(eδ, s0) = R(δ, s0).

(ii) Write

min
δ∈D

max
s0∈S0

R(δ, s0) ≤ min
δ∈D

max
s∈S

R(δ, s) ≤ min
δ:δ∈D

max
s∈S

R(eδ, s),
where the l.h. inequality obtains because S 0 ⊆ S and the r.h. inequality obtains because {eδ : δ ∈
D} ⊆ D. Now, (i) implies that both inequalities bind, hence the first claim obtains. The second claim

follows because R(eδ, s) = R(δ, s0).

Corollary 1 I compute the value functions under the assumption that outcomes are binary; results

extend to general outcomes by proposition 2. First compute R∗2(N). The minimax regret value of the

fictitious game is the value function of Nature’s best-response problem at the equilibrium, hence

R∗2(N)

= max
(μ0,μ1)∈[0,1]2

R(δ∗2, s)

= max
(μ0,μ1)∈[0,1]2

½
(μ1 − μ0)

+

∙
Pr(IN < 0) +

1

2
Pr (IN = 0)

¸
+ (μ0 − μ1)

+

∙
Pr(IN > 0) +

1

2
Pr (IN = 0)

¸¾
= max

(μ0,μ1)∈[0,1]2

½
(μ1 − μ0)

+

∙
Pr(IN < 0) +

1

2
Pr (IN = 0)

¸¾
,

where the last step uses the objective function’s symmetry. Now, observe that IN ∝ 2n − N , where

n ≡ n1 +N0 − n0 counts successes of treatment 1 as well as failures of treatment 0. Hence, IN < 0 iff
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n < N/2. By the proof of proposition 1(ii), one can set μ0 = 1− μ1, implying that the distribution of

n is binomial with parameters (N,μ1). This immediately implies that for odd N ,

R∗2(N) = max
μ1∈[1/2,1]

{(2μ1 − 1)Pr(IN < 0)} = max
a∈[1/2,1]

⎧⎨⎩(2a− 1) X
n<N/2

µ
N

n

¶
an(1− a)N−n

⎫⎬⎭ .

If N is even, then 2n−N must be even as well. Consider ignoring the last sample point. If 2n−N 6= 0,
this will not affect δ∗2(ω). If 2n−N = 0, then due to the sample design’s symmetry, it amounts to an

even randomization. Hence, δ∗2 based on the first (N − 1) sample points is a best response to π∗2 when
N is even. This implies that R∗2(N) = R∗2(N − 1) when N is even.

Next, π∗1 = π∗2, hence R∗1(N) = R∗2(N). To see this, recall that π∗1 randomizes evenly over

states {(a, b), (b, a)} with a > b. I will show that among such priors, one can restrict attention

to those that furthermore have a + b = 1. Thus, fix some ∆ ∈ (0, 1] and consider the class Γ∆
of priors πb that randomize evenly over {(b + ∆, b), (b, b + ∆)}. Within Γ∆, minimax regret is

achieved by setting b = (1−∆) /2, so that a + b = 1 obtains. To see this, use (6) to write

maxb∈[0,1−∆]minδ∈D
R
R(δ, s)dπb = ∆maxb∈[0,1−∆]minδ∈D

R
E |δ(ω)− t(s)| dπb, where t(s) ≡ I{μ1 >

μ0} denotes the treatment that is in fact better in state s. Now, minδ∈D
R
E |δ(ω)− t(s)| dπb is the

value of the statistical experiment in which t(s) is estimated under 0/1-loss with prior πb. This value

depends on b only through the distribution of ω. Assume w.l.o.g. that within-sample treatment assign-

ment was in alternating sequence, then (y2n − y2n−1)
N/2
n=1 is sufficient for ω (observation of a matched

pair that experiences the same outcome does not lead to any updating of πb). Compare the distribution

of (y2n − y2n−1) if b = (1−∆) /2 with its distribution under any other choice of b. Simple algebra
shows that the former distribution is a mixture of the latter one with a point mass at 0. As the DM can

always perform this mixture herself, minδ∈D
R
E |δ(ω)− t(s)| dπb ≤ minδ∈D

R
E |δ(ω)− t(s)| dπ(1−∆)/2.

Regarding R∗3(N), it follows along the lines of the argument for R
∗
2(N) that

R∗3(N) = max
μ1∈[0,1]

(
(μ0 − μ1)

+

"X
n>n∗

µ
N

n

¶
μn1 (1− μ1)

N−n + λ∗
µ
N

n∗

¶
μn
∗

1 (1− μ1)
N−n∗

#

+ (μ1 − μ0)
+

"X
n<n∗

µ
N

n

¶
μn1 (1− μ1)

N−n + (1− λ∗)

µ
N

n∗

¶
μn
∗

1 (1− μ1)
N−n∗

#)

= max
a∈[μ0,1]

(
(a− μ0)

"X
n<n∗

µ
N

n

¶
an(1− a)N−n + (1− λ∗)

µ
N

n∗

¶
an
∗
(1− a)N−n

∗

#)
,

where the last step uses (9).

Proposition 3 As in proposition 1, R(δ, s) depends on s only through marginal distributions P (Ytx),

so I identify states with collections of marginal distributions s = (sx)x∈X . Let π
∗ be the prior that

assigns probability π∗(s) ≡
Q
x∈X

π∗x(sx) to s. This prior induces conditional priors (π
∗
x)x∈X and renders
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sx independent of sx0 for x 6= x0. Note that π∗ exists whenever S meets the richness condition stated
in the text. The proof will verify that (δ∗, π∗) is a Nash equilibrium of the fictitious game. To begin,

for any x0 6= x, independence of sx and sx0 implies that ωx is uninformative about sx0 . That δ
∗ is

Bayes against π∗ is then elementary.

Nature’s best-response condition (2) requires that any s in the support of π∗ maximize

R(δ∗, s)

= max
δ∈D

u(δ, s)− u(δ∗, s)

= max
δ∈D

X
x∈X

Pr(X = x) (μ0x (1− Eδx(ω)) + μ1xEδx(ω))−
X
x∈X

Pr(X = x) (μ0x (1− Eδ∗x(ω)) + μ1xEδ
∗
x(ω))

=
X
x∈X

Pr(X = x)max{μ0x, μ1x}−
X
x∈X

Pr(X = x) (μ0x (1− Ed∗x(ωx)) + μ1xEd∗x(ωx))

=
X
x∈X

Pr(X = x) (max{μ0x, μ1x}− (μ0x (1− Ed∗x(ωx)) + μ1xEd∗x(ωx)))

=
X
x∈X

Pr(X = x)Rx(d
∗
x, sx).

Here, the first two steps substitute definitions from the text, the third step explicitly solves the maxi-

mization problem and also uses that δ∗x(ω) = d∗x(ωx), the fourth step collects terms, and the last step

uses (5) applied to Rx(d
∗
x, sx). By assumption, any sx in the support of π

∗
x maximizes Rx(d

∗
x, sx), thus

(2) is verified.

Example 1 The conditional decision problems are covered by proposition 2 in conjunction with

proposition 1(i); hence, that eδ∗ achieves minimax regret follows from those results in conjunction

with proposition 3. To see the additional claims, let outcomes be binary. Using proposition 1(i) and

corollary 1, the least favorable prior π∗ from proposition 3 randomizes evenly over {(am, bm, af , bf ),
(am, bm, bf , af ), (bm, am, af , bf ), (bm, am, bf , af )} for some (am, bm, af , bf ) ∈ [0, 1]4, where states are
identified with vectors E(Y0m, Y1m, Y0f , Y1f ) as in proposition 1 and where am > bm, af > bf . Claim

(i) follows because any minimax regret treatment rule must be a best response to π∗. To see (ii), let δ

be the modified decision rule, then Nature will strictly prefer state (am, bm, bf , af ) over (am, bm, af , bf )

because in the former state, δ will tend to tie-break in the wrong direction. The exception is that in

the no-data problem where Nm = Nf = 0, (δm, δf ) = (1/2, 1/2) achieves minimax regret.

Proposition 4

Preliminaries. As before, only marginal distributions of Ytx matter, thus states s can be iden-

tified with functions sx : [0, 1] → ∆[0, 1]2 where sx = P (Y0x, Y1x). Intuitively, one might want to

extend proposition 3 to unknown (μ0x, μ1x) by verifying the following least favorable prior: Let sx be
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supported on {(0, 1), (1, 0)} for all x and let sx be independent of sx0 for all x 6= x0. But there is a

problem: For any state s, let ws ≡ {x : μ0x = 1} ⊆ [0, 1], then the conjectured prior would induce the
uniform distribution over all possible sets ws, i.e. over the power set of [0, 1] — but this distribution

does not exist (e.g., chapter 3 in Billingsley 1995). Part (i) below shows that the conjectured prior can

be approximated. The intuition behind part (ii) is the same. Unlike previous proofs, the arguments

do not establish Nash equilibria, which may not exist.

(i) There exists a sequence of priors {πi} s.t. limi→∞minδ∈D
R
R(δ, s)dπi = 1/2, implying that

limi→∞minδ∈Dmaxs∈supp(πi)R(δ, s) ≥ 1/2 and hence the result. To construct πi, define the partition
Wi ≡ {[0, 1/i], (1/i, 2/i], . . . ((i− 1)/i, 1]} of the unit interval. Let (wj

i )
2i

j=1 collect the subsets of Wi in

arbitrary order. Define the collection of distributions
³
sji

´2i
j=1

by identifying sji with the degenerate

distribution concentrated at

(μ0x, μ1x)x∈X =
³
I
n
x ∈ wj

i

o
, 1− I

n
x ∈ wj

i

o´
x∈X

.

Let πi be the uniform distribution over states
³
sji

´2i
j=1
, i.e. πi assigns probability 2−i to every sji .

Notice the following features of πi: (i) The prior expectation of (Y0x, Y1x) equals (1/2, 1/2). (ii)

With slight abuse of notation, let wi(x) be the element of Wi that contains x. Then sx and sx0 are

independent whenever wi(x) 6= wi(x
0).

Recall that minδ∈D
R
R(δ, s)dπi is achieved by any decision rule δ

∗ that is Bayes for u(δ, s) given

prior πi. By elementary calculations, the posterior induced by sample data ω = {(tn, xn, yn)}Nn=1 is
concentrated on the truth for any x ∈ ∪Nn=1wi(xn) and coincides with πi otherwise. A Bayes rule δ

∗

then assigns the correct treatment conditional on any x ∈ ∪Nn=1wi(xn) and is unrestricted otherwise;

let δ∗x(ω) = 1/2 in the latter case. It follows that for any s in the support of πi,

R(δ∗, s)

=

Z µ
max {μ0x, μ1x}− Pr

¡
x ∈ ∪Nn=1wi(xn)

¢
·max {μ0x, μ1x}− Pr

¡
x /∈ ∪Nn=1wi(xn)

¢
· μ0x + μ1x

2

¶
dx

=

Z µ
1− Pr

¡
x ∈ ∪Nn=1wi(xn)

¢
− 1
2
Pr
¡
x /∈ ∪Nn=1wi(xn)

¢¶
dx

=
1

2
− 1
2

Z
Pr
¡
x ∈ ∪Nn=1wi(xn)

¢
dx

≥ 1

2
− 1
2

Z NX
n=1

Pr(x ∈ wi(xn))dx

=
1

2
− 1
2

Z
N

i
dx→ 1

2

as i → ∞. Here, the first equation holds by definition, the second one follows by substituting in for
(μ0x, μ1x), the third one collects terms, the inequality follows from basic probability calculus, and the
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last equation uses the uniform distribution of X. Finally, the no-data rule incurs maximal regret of

1/2, achieved by any Bernoulli state.

(ii) I will construct a similar sequence {πi} as in (i). For every i, partition [0, 1] into level sets as
follows:

Wi = {{x : 0 ≤ μ0x ≤ 1/i}, {x : 1/i < μ0x ≤ 2/i}, . . . , {x : (i− 1)/i < μ0x ≤ 1}}.

This partition is legal because μ0x is measurable. As before, define wi(x) to denote the element of

Wi that contains x; also, for each w ∈ Wi, define μ0w = inf{μ0x : x ∈ w}. For future use, note in
particular that μ0wi(x) ≥ μ0x − 1/i. Define (w

j
i )
2i

j=1 and
³
sji

´2i
j=1

as in (i). Then πi is characterized

by Pr(s = sji ) =
Y

w∈Wi

³
μ0w · I

n
w ∈ wj

i

o
+ (1− μ0w) · I

n
w /∈ wj

i

o´
. Note the following features of

πi: (i) The prior expectation of Y1x equals μ0wi(x) ≤ μ0x, (ii) sx and sx0 are independent whenever

wi(x) 6= wi(x
0). Thus, a Bayes rule δ∗ assigns the better treatment whenever x ∈ ∪Nn=1wi(xn) and sets

δ∗x(ω) = 0 otherwise. Now,Z
R(δ∗, s)dπi

=

Z Z ¡
max {μ0x, μ1x}− Pr

¡
x ∈ ∪Nn=1wi(xn)

¢
·max {μ0x, μ1x}− Pr

¡
x /∈ ∪Nn=1wi(xn)

¢
μ0x
¢
dxdπi.

As before,
R
Pr
¡
x ∈ ∪Nn=1wi(xn)

¢
dx→ 0, hence

. . . =

Z Z
(max {μ0x, μ1x}− μ0x) dxdπi

=

Z µZ
max {μ0x, μ1x} dπi − μ0x

¶
dx

=

Z ³
μ0wi(x) + (1− μ0wi(x))μ0x − μ0x

´
dx

=

Z
μ0wi(x)(1− μ0x)dx

≥
Z
(μ0x − 1/i)(1− μ0x)dx

→
Z

μ0x(1− μ0x)dx

as i → ∞. Here, the second step evaluates the inner integral, using that by construction of πi,

max {μ0x, μ1x} equals 1 with probability μ0wi(x) and equals μ0x otherwise. The other steps are algebra.
Now consider the no-data rule δ with δx(ω) = 1− μ0x. Maximal regret incurred by this rule is

max
s∈S

R(δ, s) = max
s∈S

½Z ³
(μ1x − μ0x)

+ μ0x + (μ0x − μ1x)
+ (1− μ0x)

´
dx

¾
=

Z
μ0x(1− μ0x)dx,

where the first equality uses (6); the second equality follows by solving the maximization problem.
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